{"title":"MT1JP: A Pivotal Tumor-Suppressing LncRNA and its Role in Cancer Progression and Therapeutic Potential.","authors":"Haodong He, Jingjie Yang, Wenjin Peng, Moyu Li, Meiyan Shuai, Faming Tan, Zheng Cao, Chengfu Yuan","doi":"10.2174/0113894501365982250119150404","DOIUrl":null,"url":null,"abstract":"<p><p>Metallothionein 1J pseudogene (MT1JP) is a long non-coding RNA (lncRNA) that functions as a tumor suppressor in various malignancies. Reduced MT1JP expression is associated with increased tumor proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and treatment resistance in nine cancers, such as gastric cancer, intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and breast cancer. Mechanistically, MT1JP acts as a competitive endogenous RNA (ceRNA) to regulate oncogenic microRNAs (miRNAs), including miR-92a-3p, miR-214-3p, and miR-24-3p. This regulation restores tumor suppressor genes, such as FBXW7, RUNX3, and PTEN, thereby disrupting oncogenic pathways, including PI3K/AKT, Wnt/βcatenin, and p53, promoting apoptosis, and inhibiting tumor progression. Clinically, MT1JP expression correlates with tumor grade, differentiation, TNM stage, lymph node metastasis, and patient prognosis, suggesting its potential as a diagnostic and prognostic biomarker. Furthermore, its therapeutic potential in RNA-based treatments has attracted significant attention. Despite these findings, questions remain regarding its role in epigenetic regulation, transcriptional control, and RNA delivery. This review explores the molecular mechanisms underlying MT1JP, highlighting its clinical relevance and potential as a therapeutic target. Future research should focus on elucidating its role in epigenetic regulation, overcoming challenges in therapeutic delivery, and validating its utility as a biomarker for different cancers. MT1JP holds promise for advancing precision oncology by providing innovative approaches for cancer diagnosis and treatment.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113894501365982250119150404","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Metallothionein 1J pseudogene (MT1JP) is a long non-coding RNA (lncRNA) that functions as a tumor suppressor in various malignancies. Reduced MT1JP expression is associated with increased tumor proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and treatment resistance in nine cancers, such as gastric cancer, intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and breast cancer. Mechanistically, MT1JP acts as a competitive endogenous RNA (ceRNA) to regulate oncogenic microRNAs (miRNAs), including miR-92a-3p, miR-214-3p, and miR-24-3p. This regulation restores tumor suppressor genes, such as FBXW7, RUNX3, and PTEN, thereby disrupting oncogenic pathways, including PI3K/AKT, Wnt/βcatenin, and p53, promoting apoptosis, and inhibiting tumor progression. Clinically, MT1JP expression correlates with tumor grade, differentiation, TNM stage, lymph node metastasis, and patient prognosis, suggesting its potential as a diagnostic and prognostic biomarker. Furthermore, its therapeutic potential in RNA-based treatments has attracted significant attention. Despite these findings, questions remain regarding its role in epigenetic regulation, transcriptional control, and RNA delivery. This review explores the molecular mechanisms underlying MT1JP, highlighting its clinical relevance and potential as a therapeutic target. Future research should focus on elucidating its role in epigenetic regulation, overcoming challenges in therapeutic delivery, and validating its utility as a biomarker for different cancers. MT1JP holds promise for advancing precision oncology by providing innovative approaches for cancer diagnosis and treatment.
期刊介绍:
Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes.
Current Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of drug targets. The journal also accepts for publication mini- & full-length review articles and drug clinical trial studies.
As the discovery, identification, characterization and validation of novel human drug targets for drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.