Effects of the 2022 Oder River environmental disaster on fish gill structure.

IF 1.1 4区 农林科学 Q3 FISHERIES Diseases of aquatic organisms Pub Date : 2025-01-23 DOI:10.3354/dao03836
Leszek Satora, Agata Korzelecka-Orkisz, Dorota Pawlos-Podbielska, Krzysztof Formicki
{"title":"Effects of the 2022 Oder River environmental disaster on fish gill structure.","authors":"Leszek Satora, Agata Korzelecka-Orkisz, Dorota Pawlos-Podbielska, Krzysztof Formicki","doi":"10.3354/dao03836","DOIUrl":null,"url":null,"abstract":"<p><p>The 2022 Oder River disaster was one of the most significant harmful events in recent European river history, with an estimated 60% reduction in fish biomass in the lower section of the river. While the prevailing hypothesis attributes associated fish kills to toxins from golden algae Prymnesium parvum, our histopathological study on the gills of 2 common cyprinid fish species, namely vimba bream Vimba vimba (L.) and roach Rutilus rutilus (L.), collected from the lower Oder River at 3, 4, and 6 mo after the disaster, suggests another mechanism. Vimba bream showed damage to the epithelial layer of lamellae and increased mucus production. Roach exhibited interlamellar cell mass (ILCM), lamellar damage, including hypertrophy of epithelial cells, lamellar fusion, as well as significant thickening of the water-blood barrier compared to controls. These findings suggest that adverse factors, most likely the increase in toxin concentrations resulting from reduced water levels together with elevated temperatures and low precipitation, triggered the formation of ILCM, increasing the susceptibility of fish to hypoxia. Fish species with a capacity for adaptive interlamellar hyperplasia, such as common bream Abramis brama, roach, and common perch Perca fluviatilis, accounted for the largest number of deaths during the disaster. Vimba bream, which showed no ILCM, were observed only sporadically, with mortality confined to a single area of the Oder. In conclusion, fish capable of adaptive hyperplasia, whereby the gills attempt to protect themselves by developing ILCM, appear to be particularly vulnerable in conditions of aquatic hypoxia.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"161 ","pages":"29-38"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases of aquatic organisms","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/dao03836","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

The 2022 Oder River disaster was one of the most significant harmful events in recent European river history, with an estimated 60% reduction in fish biomass in the lower section of the river. While the prevailing hypothesis attributes associated fish kills to toxins from golden algae Prymnesium parvum, our histopathological study on the gills of 2 common cyprinid fish species, namely vimba bream Vimba vimba (L.) and roach Rutilus rutilus (L.), collected from the lower Oder River at 3, 4, and 6 mo after the disaster, suggests another mechanism. Vimba bream showed damage to the epithelial layer of lamellae and increased mucus production. Roach exhibited interlamellar cell mass (ILCM), lamellar damage, including hypertrophy of epithelial cells, lamellar fusion, as well as significant thickening of the water-blood barrier compared to controls. These findings suggest that adverse factors, most likely the increase in toxin concentrations resulting from reduced water levels together with elevated temperatures and low precipitation, triggered the formation of ILCM, increasing the susceptibility of fish to hypoxia. Fish species with a capacity for adaptive interlamellar hyperplasia, such as common bream Abramis brama, roach, and common perch Perca fluviatilis, accounted for the largest number of deaths during the disaster. Vimba bream, which showed no ILCM, were observed only sporadically, with mortality confined to a single area of the Oder. In conclusion, fish capable of adaptive hyperplasia, whereby the gills attempt to protect themselves by developing ILCM, appear to be particularly vulnerable in conditions of aquatic hypoxia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diseases of aquatic organisms
Diseases of aquatic organisms 农林科学-兽医学
CiteScore
3.10
自引率
0.00%
发文量
53
审稿时长
8-16 weeks
期刊介绍: DAO publishes Research Articles, Reviews, and Notes, as well as Comments/Reply Comments (for details see DAO 48:161), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may cover all forms of life - animals, plants and microorganisms - in marine, limnetic and brackish habitats. DAO''s scope includes any research focusing on diseases in aquatic organisms, specifically: -Diseases caused by coexisting organisms, e.g. viruses, bacteria, fungi, protistans, metazoans; characterization of pathogens -Diseases caused by abiotic factors (critical intensities of environmental properties, including pollution)- Diseases due to internal circumstances (innate, idiopathic, genetic)- Diseases due to proliferative disorders (neoplasms)- Disease diagnosis, treatment and prevention- Molecular aspects of diseases- Nutritional disorders- Stress and physical injuries- Epidemiology/epizootiology- Parasitology- Toxicology- Diseases of aquatic organisms affecting human health and well-being (with the focus on the aquatic organism)- Diseases as indicators of humanity''s detrimental impact on nature- Genomics, proteomics and metabolomics of disease- Immunology and disease prevention- Animal welfare- Zoonosis
期刊最新文献
Effects of the 2022 Oder River environmental disaster on fish gill structure. Development of colloidal gold immunochromatographic strip for rapid detection of cyvirus cyprinidallo 2. Harnessing the immunomodulatory potential of ashwagandha (Withania somnifera) against epizootic ulcerative syndrome: a sustainable approach for hill aquaculture. Epidemiological cut-off values for Vibrio parahaemolyticus calculated from minimal inhibitory concentration data generated at 35 and 28°C. Testing for thermal acclimation in zoospores of an amphibian pathogen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1