William A Lathram, Robert J Neff, Ashley N Zalla, James D Brien, Vivekanandan Subramanian, Christopher D Radka
{"title":"Dissecting the biophysical mechanisms of oleate hydratase association with membranes.","authors":"William A Lathram, Robert J Neff, Ashley N Zalla, James D Brien, Vivekanandan Subramanian, Christopher D Radka","doi":"10.3389/fmolb.2024.1504373","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from <i>Staphylococcus aureus</i>, and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions. Using fluorescence correlation spectroscopy (FCS), we examined the effects of membrane curvature and lipid availability on OhyA binding to phosphatidylglycerol unilamellar vesicles. Our results reveal that OhyA preferentially binds to vesicles with moderate curvature, while the presence of substrate fatty acids slightly enhanced the overall interaction despite reducing the binding affinity by 3- to 4-fold. Complementary phosphorus-31 (<sup>31</sup>P) NMR spectroscopy further demonstrated two distinct binding modes: a fast-exchange interaction at lower protein concentrations and a longer lasting interaction at higher protein concentrations, likely reflecting cooperative oligomerization. These findings highlight the reversible, non-stoichiometric nature of OhyA•membrane interactions, with dynamic binding behaviors influenced by protein concentration and lipid environment. This research provides new insights into the dynamic behavior of OhyA on bacterial membranes, highlighting that initial interactions are driven by lipid-mediated protein binding, while sustained interactions are primarily governed by the protein:lipid molar ratio rather than the formation of new, specific lipid-protein interactions. These findings advance our understanding of the biophysical principles underlying OhyA's role in bacterial membrane function and virulence.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"11 ","pages":"1504373"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2024.1504373","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from Staphylococcus aureus, and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions. Using fluorescence correlation spectroscopy (FCS), we examined the effects of membrane curvature and lipid availability on OhyA binding to phosphatidylglycerol unilamellar vesicles. Our results reveal that OhyA preferentially binds to vesicles with moderate curvature, while the presence of substrate fatty acids slightly enhanced the overall interaction despite reducing the binding affinity by 3- to 4-fold. Complementary phosphorus-31 (31P) NMR spectroscopy further demonstrated two distinct binding modes: a fast-exchange interaction at lower protein concentrations and a longer lasting interaction at higher protein concentrations, likely reflecting cooperative oligomerization. These findings highlight the reversible, non-stoichiometric nature of OhyA•membrane interactions, with dynamic binding behaviors influenced by protein concentration and lipid environment. This research provides new insights into the dynamic behavior of OhyA on bacterial membranes, highlighting that initial interactions are driven by lipid-mediated protein binding, while sustained interactions are primarily governed by the protein:lipid molar ratio rather than the formation of new, specific lipid-protein interactions. These findings advance our understanding of the biophysical principles underlying OhyA's role in bacterial membrane function and virulence.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.