Lanxin Ji, Mark Duffy, Bosi Chen, Amyn Majbri, Christopher J. Trentacosta, Moriah Thomason
{"title":"Whole Brain MRI Assessment of Age and Sex-Related R2* Changes in the Human Fetal Brain","authors":"Lanxin Ji, Mark Duffy, Bosi Chen, Amyn Majbri, Christopher J. Trentacosta, Moriah Thomason","doi":"10.1002/hbm.70073","DOIUrl":null,"url":null,"abstract":"<p>Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments. Our findings reveal that brain R2* levels significantly increase throughout gestation spanning many different regions, except the frontal lobe. Furthermore, females exhibit a faster rate of R2* increase compared to males, in both gray matter and white matter. This sex effect is particularly notable within the left insula. This work represents the first MRI examination of iron accumulation and sex differences in developing fetal brains. This is also the first study to establish R2* estimation methodology in fetal multiecho functional MRI.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments. Our findings reveal that brain R2* levels significantly increase throughout gestation spanning many different regions, except the frontal lobe. Furthermore, females exhibit a faster rate of R2* increase compared to males, in both gray matter and white matter. This sex effect is particularly notable within the left insula. This work represents the first MRI examination of iron accumulation and sex differences in developing fetal brains. This is also the first study to establish R2* estimation methodology in fetal multiecho functional MRI.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.