Inhibition of vascular smooth muscle cell PERK/ATF4 ER stress signaling protects against abdominal aortic aneurysms.

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL JCI insight Pub Date : 2025-01-23 DOI:10.1172/jci.insight.183959
Brennan Callow, Xiaobing He, Nicholas Juriga, Kevin D Mangum, Amrita Joshi, Xianying Xing, Andrea Obi, Abhijnan Chattopadhyay, Dianna M Milewicz, Mary X O'Riordan, Johann Gudjonsson, Katherine Gallagher, Frank M Davis
{"title":"Inhibition of vascular smooth muscle cell PERK/ATF4 ER stress signaling protects against abdominal aortic aneurysms.","authors":"Brennan Callow, Xiaobing He, Nicholas Juriga, Kevin D Mangum, Amrita Joshi, Xianying Xing, Andrea Obi, Abhijnan Chattopadhyay, Dianna M Milewicz, Mary X O'Riordan, Johann Gudjonsson, Katherine Gallagher, Frank M Davis","doi":"10.1172/jci.insight.183959","DOIUrl":null,"url":null,"abstract":"<p><p>Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response. Mechanistically, we reported that aberrant TNF-α activity within the aortic wall induces VSMC ATF4 activation through the PERK endoplasmic reticulum stress response, resulting in progressive apoptosis. In vivo targeted inhibition of the PERK pathway, with VSMC-specific genetic depletion (Eif2ak3fl/fl Myh11-CreERT2) or pharmacological inhibition in the elastase and angiotensin II-induced AAA model preserved VSMC function, decreased elastin fragmentation, attenuated VSMC apoptosis, and markedly reduced AAA expansion. Together, our findings suggest that cell-specific pharmacologic therapy targeting the PERK/eIF2α/ATF4 pathway in VSMCs may be an effective intervention to prevent AAA expansion.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 2","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.183959","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response. Mechanistically, we reported that aberrant TNF-α activity within the aortic wall induces VSMC ATF4 activation through the PERK endoplasmic reticulum stress response, resulting in progressive apoptosis. In vivo targeted inhibition of the PERK pathway, with VSMC-specific genetic depletion (Eif2ak3fl/fl Myh11-CreERT2) or pharmacological inhibition in the elastase and angiotensin II-induced AAA model preserved VSMC function, decreased elastin fragmentation, attenuated VSMC apoptosis, and markedly reduced AAA expansion. Together, our findings suggest that cell-specific pharmacologic therapy targeting the PERK/eIF2α/ATF4 pathway in VSMCs may be an effective intervention to prevent AAA expansion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
期刊最新文献
Ageing and inflammation limit the induction of SARS-CoV-2-specific CD8+ T cell responses in severe COVID-19. Permanent defects in renal medullary structure and function after reversal of urinary obstruction. Identification and validation of a T cell receptor targeting KRAS G12V in HLA-A*11:01 pancreatic cancer patients. Inhibition of vascular smooth muscle cell PERK/ATF4 ER stress signaling protects against abdominal aortic aneurysms. CD34hi subset of synovial fibroblasts contributes to fibrotic phenotype of human knee osteoarthritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1