Strength training improves heart function, collagen and strength in rats with heart failure.

IF 2.6 4区 医学 Q2 PHYSIOLOGY Journal of Physiological Sciences Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI:10.1186/s12576-024-00899-3
Leisiane G Dias, Carlos H O Reis, Leonardo Dos Santos, Walter Krause Neto, Ana Paula Lima-Leopoldo, Julien S Baker, André S Leopoldo, Danilo S Bocalini
{"title":"Strength training improves heart function, collagen and strength in rats with heart failure.","authors":"Leisiane G Dias, Carlos H O Reis, Leonardo Dos Santos, Walter Krause Neto, Ana Paula Lima-Leopoldo, Julien S Baker, André S Leopoldo, Danilo S Bocalini","doi":"10.1186/s12576-024-00899-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Myocardial infarction (MI) frequently leads to cardiac remodeling and failure with impaired life quality, playing an important role in cardiovascular deaths. Although physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases, the effects of strength training (ST) on the structural and functional aspects of cardiac remodeling need to be further documented. In this study, we aimed to investigate the role of a linear block ST protocol in the rat model of MI.</p><p><strong>Methods and results: </strong>After 6 weeks of MI induction or sham surgery, male adult rats performed ST for the following 12 weeks. The ladder-based ST program was organized in three mesocycles of 4 weeks, with one load increment for each block according to the maximal carrying load test. After 12 weeks, the infarcted-trained rats exhibited an increase in performance, associated with reduced cardiac hypertrophy and pulmonary congestion compared with the untrained group. Despite not changing MI size, the ST program partially prevented cardiac dilatation and ventricular dysfunction assessed by echocardiography and hemodynamics, and interstitial fibrosis evaluated by histology. In addition, isolated cardiac muscles from infarcted-trained rats had improved contractility parameters in a steady state, and in response to calcium or stimuli pauses.</p><p><strong>Conclusions: </strong>The ST in infarcted rats increased the capacity to carry mass, associated with attenuation of cardiac remodeling and pulmonary congestion with improving cardiac function that could be attributed, at least in part, to the improvement of myocardial contractility.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"10"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-024-00899-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: Myocardial infarction (MI) frequently leads to cardiac remodeling and failure with impaired life quality, playing an important role in cardiovascular deaths. Although physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases, the effects of strength training (ST) on the structural and functional aspects of cardiac remodeling need to be further documented. In this study, we aimed to investigate the role of a linear block ST protocol in the rat model of MI.

Methods and results: After 6 weeks of MI induction or sham surgery, male adult rats performed ST for the following 12 weeks. The ladder-based ST program was organized in three mesocycles of 4 weeks, with one load increment for each block according to the maximal carrying load test. After 12 weeks, the infarcted-trained rats exhibited an increase in performance, associated with reduced cardiac hypertrophy and pulmonary congestion compared with the untrained group. Despite not changing MI size, the ST program partially prevented cardiac dilatation and ventricular dysfunction assessed by echocardiography and hemodynamics, and interstitial fibrosis evaluated by histology. In addition, isolated cardiac muscles from infarcted-trained rats had improved contractility parameters in a steady state, and in response to calcium or stimuli pauses.

Conclusions: The ST in infarcted rats increased the capacity to carry mass, associated with attenuation of cardiac remodeling and pulmonary congestion with improving cardiac function that could be attributed, at least in part, to the improvement of myocardial contractility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
4.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound. Fields covered: Adaptation and environment Autonomic nervous function Biophysics Cell sensors and signaling Central nervous system and brain sciences Endocrinology and metabolism Excitable membranes and neural cell physiology Exercise physiology Gastrointestinal and kidney physiology Heart and circulatory physiology Molecular and cellular physiology Muscle physiology Physiome/systems biology Respiration physiology Senses.
期刊最新文献
TRPV1 and thermosensitivity. Thermosensitive TRPM2: The regulatory mechanisms of its temperature sensitivity and physiological functions. Circadian sleep-wake rhythm reversal in mice implanted with stomach cancer cell lines. The difference in arterial baroreflex sensitivity between the supine and standing positions in healthy subjects. TRPV3 in skin thermosensation and temperature responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1