Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-01-22 DOI:10.1186/s12951-025-03103-9
Keyu Kong, Baixing Li, Yongyun Chang, Chen Zhao, Hua Qiao, Minghao Jin, Xinru Wu, Wenxuan Fan, Liao Wang, Yansong Qi, Yongsheng Xu, Zanjing Zhai, Peixiang Ma, Huiwu Li
{"title":"Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence.","authors":"Keyu Kong, Baixing Li, Yongyun Chang, Chen Zhao, Hua Qiao, Minghao Jin, Xinru Wu, Wenxuan Fan, Liao Wang, Yansong Qi, Yongsheng Xu, Zanjing Zhai, Peixiang Ma, Huiwu Li","doi":"10.1186/s12951-025-03103-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis (OA) is a degenerative joint disease with an immense unmet medical need. FGF18 protein is a potential regenerative factor for cartilage repair. However, traditional protein delivery methods have limited efficacy due to the short lifetime and shallow infiltration.</p><p><strong>Results: </strong>In this work, we discovered that lipid nanoparticle (LNP) can infiltrate and deliver FGF18 mRNA deeper in the cartilage than proteins. After mRNA UTR optimization and chemical modification, the expression of FGF18 can last up to 6 days in the cartilage. Furthermore, delivering FGF18 mRNA activates FOXO3a-autophagy pathway, which protects against chondrocyte degeneration and senescence. Local intra-articular injection of FGF18 mRNA-LNP significantly alleviates OA symptoms in DMM and senile OA models. Sustained expression and accessibility of FGF18-mRNA to deeper chondrocytes makes LNP-mRNA more effective than FGF18 recombinant protein.</p><p><strong>Conclusions: </strong>In summary, this study presents a novel approach superior to recombinant protein alone and holds promise as a new therapeutic strategy for OA.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"34"},"PeriodicalIF":10.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03103-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteoarthritis (OA) is a degenerative joint disease with an immense unmet medical need. FGF18 protein is a potential regenerative factor for cartilage repair. However, traditional protein delivery methods have limited efficacy due to the short lifetime and shallow infiltration.

Results: In this work, we discovered that lipid nanoparticle (LNP) can infiltrate and deliver FGF18 mRNA deeper in the cartilage than proteins. After mRNA UTR optimization and chemical modification, the expression of FGF18 can last up to 6 days in the cartilage. Furthermore, delivering FGF18 mRNA activates FOXO3a-autophagy pathway, which protects against chondrocyte degeneration and senescence. Local intra-articular injection of FGF18 mRNA-LNP significantly alleviates OA symptoms in DMM and senile OA models. Sustained expression and accessibility of FGF18-mRNA to deeper chondrocytes makes LNP-mRNA more effective than FGF18 recombinant protein.

Conclusions: In summary, this study presents a novel approach superior to recombinant protein alone and holds promise as a new therapeutic strategy for OA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Neutrophil-macrophage hybrid membrane-coated prussian blue nanozyme for ulcerative colitis treatment and mechanistic insights. Recent advances of anti-tumor nano-strategies via overturning pH gradient: alkalization and acidification. Enhanced bioaccumulation and toxicity of Fenpropathrin by polystyrene nano(micro)plastics in the model insect, silkworm (Bombyx mori). Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway. Highly effective treatment of bacterial infection-accompanied wounds by fat extract-embedded phototherapeutic hydrogel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1