Hui-Ying Zhang, Qiu-Yang Zhang, Qing Liu, Si-Guo Feng, Yan Ma, Feng-Sheng Wang, Yue Zhu, Jin Yao, Biao Yan
{"title":"Exosome-loading miR-205: a two-pronged approach to ocular neovascularization therapy.","authors":"Hui-Ying Zhang, Qiu-Yang Zhang, Qing Liu, Si-Guo Feng, Yan Ma, Feng-Sheng Wang, Yue Zhu, Jin Yao, Biao Yan","doi":"10.1186/s12951-024-03079-y","DOIUrl":null,"url":null,"abstract":"<p><p>Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics. In this study, we report a marked down-regulation of miR-205 under pathological conditions. miR-205 potently inhibits endothelial cell functions critical for pathological neovascularization, including proliferation, migration, and tube formation. Furthermore, miR-205 strengthens the endothelial barrier, thereby reducing vascular leakage. In mouse models of retinal and choroidal neovascularization, miR-205 administration effectively suppresses abnormal blood vessel formation and leakage. Mechanistically, miR-205 directly targets VEGFA and ANGPT2, which are key drivers of pathological neovascularization. To improve delivery, we successfully loaded miR-205 into exosomes derived from mesenchymal stem cells. This innovative approach avoids cytotoxicity while preserving therapeutic efficacy in both cellular and animal models. Collectively, our findings highlight miR-205 as a promising therapeutic for ocular neovascularization, with exosome delivery offering a novel and efficient strategy for treating vision-threatening vascular diseases.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"36"},"PeriodicalIF":10.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03079-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics. In this study, we report a marked down-regulation of miR-205 under pathological conditions. miR-205 potently inhibits endothelial cell functions critical for pathological neovascularization, including proliferation, migration, and tube formation. Furthermore, miR-205 strengthens the endothelial barrier, thereby reducing vascular leakage. In mouse models of retinal and choroidal neovascularization, miR-205 administration effectively suppresses abnormal blood vessel formation and leakage. Mechanistically, miR-205 directly targets VEGFA and ANGPT2, which are key drivers of pathological neovascularization. To improve delivery, we successfully loaded miR-205 into exosomes derived from mesenchymal stem cells. This innovative approach avoids cytotoxicity while preserving therapeutic efficacy in both cellular and animal models. Collectively, our findings highlight miR-205 as a promising therapeutic for ocular neovascularization, with exosome delivery offering a novel and efficient strategy for treating vision-threatening vascular diseases.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.