A Comprehensive Review on the Application of Artificial Intelligence for Predicting Postsurgical Recurrence Risk in Early-Stage Non-Small Cell Lung Cancer Using Computed Tomography, Positron Emission Tomography, and Clinical Data.

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Radiation Sciences Pub Date : 2025-01-23 DOI:10.1002/jmrs.860
Ghazal Mehri-Kakavand, Sibusiso Mdletshe, Alan Wang
{"title":"A Comprehensive Review on the Application of Artificial Intelligence for Predicting Postsurgical Recurrence Risk in Early-Stage Non-Small Cell Lung Cancer Using Computed Tomography, Positron Emission Tomography, and Clinical Data.","authors":"Ghazal Mehri-Kakavand, Sibusiso Mdletshe, Alan Wang","doi":"10.1002/jmrs.860","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Despite advancements in early detection and treatment, postsurgical recurrence remains a significant challenge, occurring in 30%-55% of patients within 5 years after surgery. This review analysed existing studies on the utilisation of artificial intelligence (AI), incorporating CT, PET, and clinical data, for predicting recurrence risk in early-stage NSCLCs.</p><p><strong>Methods: </strong>A literature search was conducted across multiple databases, focusing on studies published between 2018 and 2024 that employed radiomics, machine learning, and deep learning based on preoperative positron emission tomography (PET), computed tomography (CT), and PET/CT, with or without clinical data integration. Sixteen studies met the inclusion criteria and were assessed for methodological quality using the METhodological RadiomICs Score (METRICS).</p><p><strong>Results: </strong>The reviewed studies demonstrated the potential of radiomics and AI models in predicting postoperative recurrence risk. Various approaches showed promising results, including handcrafted radiomics features, deep learning models, and multimodal models combining different imaging modalities with clinical data. However, several challenges and limitations were identified, such as small sample sizes, lack of external validation, interpretability issues, and the need for effective multimodal imaging techniques.</p><p><strong>Conclusions: </strong>Future research should focus on conducting larger, prospective, multicentre studies, improving data integration and interpretability, enhancing the fusion of imaging modalities, assessing clinical utility, standardising methodologies, and fostering collaboration among researchers and institutions. Addressing these aspects will advance the development of robust and generalizable AI models for predicting postsurgical recurrence risk in early-stage NSCLC, ultimately improving patient care and outcomes.</p>","PeriodicalId":16382,"journal":{"name":"Journal of Medical Radiation Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Radiation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jmrs.860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Despite advancements in early detection and treatment, postsurgical recurrence remains a significant challenge, occurring in 30%-55% of patients within 5 years after surgery. This review analysed existing studies on the utilisation of artificial intelligence (AI), incorporating CT, PET, and clinical data, for predicting recurrence risk in early-stage NSCLCs.

Methods: A literature search was conducted across multiple databases, focusing on studies published between 2018 and 2024 that employed radiomics, machine learning, and deep learning based on preoperative positron emission tomography (PET), computed tomography (CT), and PET/CT, with or without clinical data integration. Sixteen studies met the inclusion criteria and were assessed for methodological quality using the METhodological RadiomICs Score (METRICS).

Results: The reviewed studies demonstrated the potential of radiomics and AI models in predicting postoperative recurrence risk. Various approaches showed promising results, including handcrafted radiomics features, deep learning models, and multimodal models combining different imaging modalities with clinical data. However, several challenges and limitations were identified, such as small sample sizes, lack of external validation, interpretability issues, and the need for effective multimodal imaging techniques.

Conclusions: Future research should focus on conducting larger, prospective, multicentre studies, improving data integration and interpretability, enhancing the fusion of imaging modalities, assessing clinical utility, standardising methodologies, and fostering collaboration among researchers and institutions. Addressing these aspects will advance the development of robust and generalizable AI models for predicting postsurgical recurrence risk in early-stage NSCLC, ultimately improving patient care and outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Radiation Sciences
Journal of Medical Radiation Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.20
自引率
4.80%
发文量
69
审稿时长
8 weeks
期刊介绍: Journal of Medical Radiation Sciences (JMRS) is an international and multidisciplinary peer-reviewed journal that accepts manuscripts related to medical imaging / diagnostic radiography, radiation therapy, nuclear medicine, medical ultrasound / sonography, and the complementary disciplines of medical physics, radiology, radiation oncology, nursing, psychology and sociology. Manuscripts may take the form of: original articles, review articles, commentary articles, technical evaluations, case series and case studies. JMRS promotes excellence in international medical radiation science by the publication of contemporary and advanced research that encourages the adoption of the best clinical, scientific and educational practices in international communities. JMRS is the official professional journal of the Australian Society of Medical Imaging and Radiation Therapy (ASMIRT) and the New Zealand Institute of Medical Radiation Technology (NZIMRT).
期刊最新文献
A Comprehensive Review on the Application of Artificial Intelligence for Predicting Postsurgical Recurrence Risk in Early-Stage Non-Small Cell Lung Cancer Using Computed Tomography, Positron Emission Tomography, and Clinical Data. Exploring MRI Safety Knowledge Among Physicians and Nurses in Saudi Arabia: Highlighting Knowledge Gaps and Key Influencing Factors. Impact of Pre-Examination Video Education in Gd-EOB-DTPA-Enhanced Liver MRI: Correspondence. The ongoing impact of COVID-19 on the clinical education of Australian medical radiation science students. Evaluating Proton Versus Photon Therapy: A Call for Nuanced Decision-Making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1