PLGA confers upon conventional nonfluorescent molecules luminescent properties to trigger 1O2-induced pyroptosis and immune response in tumors.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-01-22 DOI:10.1186/s12951-025-03094-7
Lan Zou, Rujing Wang, Mengnan Zhao, Yuke Li, Chen Sun, Jinjin Xie, Yan Chen, Qian Jing, Dandan Mi, Sanjun Shi
{"title":"PLGA confers upon conventional nonfluorescent molecules luminescent properties to trigger <sup>1</sup>O<sub>2</sub>-induced pyroptosis and immune response in tumors.","authors":"Lan Zou, Rujing Wang, Mengnan Zhao, Yuke Li, Chen Sun, Jinjin Xie, Yan Chen, Qian Jing, Dandan Mi, Sanjun Shi","doi":"10.1186/s12951-025-03094-7","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroptosis, a recently identified cellular demise regulated by gasdermin family proteins, is emerging as a promising avenue in cancer immunotherapy. However, the realm of light-controlled pyroptosis in cancer cells remains largely unexplored. In this study, we took a deliberate approach devoid of any chemical alterations to develop a novel photosensitizer called \"pharmaceutical-dots (pharm-dots)\" by combining nonemissive polymers (Poly (lactic-co-glycolic acid), PLGA) with nonfluorescent invisible molecules like curcumin, berberine, oridonin into PLGA nanoparticles (PLGA-NPs). Initially, our research commenced with a comprehensive mechanistic comparison study, consolidating fragmented information on optical mechanisms. This exploration revealed that surface passivation atoms play a dominant role in governing the fluorescence emission of PLGA-NPs. Remarkably, these new luminophores, composed of two non-inherently luminous components, exhibit a remarkable synergistic boost in photoluminescence through a \"0 + 0 > 2\" phenomenon. In-depth investigations uncovered that these luminous PLGA-NPs, capable of generating <sup>1</sup>O<sub>2</sub>, induce pyroptosis under photoexcitation conditions through the caspase-3/gasdermin E (GSDME) pathway. Simultaneously, our findings highlight PLGA-NPs as a novel optical formulation suitable for imaging, displaying substantial biological activity when paired with photoirradiation. This discovery holds the potential to facilitate the application of light-controlled pyroptosis in antitumor therapy, marking a promising stride toward innovative approaches in cancer treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"35"},"PeriodicalIF":10.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03094-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyroptosis, a recently identified cellular demise regulated by gasdermin family proteins, is emerging as a promising avenue in cancer immunotherapy. However, the realm of light-controlled pyroptosis in cancer cells remains largely unexplored. In this study, we took a deliberate approach devoid of any chemical alterations to develop a novel photosensitizer called "pharmaceutical-dots (pharm-dots)" by combining nonemissive polymers (Poly (lactic-co-glycolic acid), PLGA) with nonfluorescent invisible molecules like curcumin, berberine, oridonin into PLGA nanoparticles (PLGA-NPs). Initially, our research commenced with a comprehensive mechanistic comparison study, consolidating fragmented information on optical mechanisms. This exploration revealed that surface passivation atoms play a dominant role in governing the fluorescence emission of PLGA-NPs. Remarkably, these new luminophores, composed of two non-inherently luminous components, exhibit a remarkable synergistic boost in photoluminescence through a "0 + 0 > 2" phenomenon. In-depth investigations uncovered that these luminous PLGA-NPs, capable of generating 1O2, induce pyroptosis under photoexcitation conditions through the caspase-3/gasdermin E (GSDME) pathway. Simultaneously, our findings highlight PLGA-NPs as a novel optical formulation suitable for imaging, displaying substantial biological activity when paired with photoirradiation. This discovery holds the potential to facilitate the application of light-controlled pyroptosis in antitumor therapy, marking a promising stride toward innovative approaches in cancer treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Neutrophil-macrophage hybrid membrane-coated prussian blue nanozyme for ulcerative colitis treatment and mechanistic insights. Recent advances of anti-tumor nano-strategies via overturning pH gradient: alkalization and acidification. Enhanced bioaccumulation and toxicity of Fenpropathrin by polystyrene nano(micro)plastics in the model insect, silkworm (Bombyx mori). Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway. Highly effective treatment of bacterial infection-accompanied wounds by fat extract-embedded phototherapeutic hydrogel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1