Rapid prospective motion correction using free induction decay and stationary field probe navigators at 7T.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance in Medicine Pub Date : 2025-01-23 DOI:10.1002/mrm.30441
Matthias Serger, Rüdiger Stirnberg, Philipp Ehses, Tony Stöcker
{"title":"Rapid prospective motion correction using free induction decay and stationary field probe navigators at 7T.","authors":"Matthias Serger, Rüdiger Stirnberg, Philipp Ehses, Tony Stöcker","doi":"10.1002/mrm.30441","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>MR-based FID navigators (FIDnavs) do not require gradient pulses and are attractive for prospective motion correction (PMC) due to short acquisition times and high sampling rates. However, accuracy and precision are limited and depend on a separate calibration measurement. Besides FIDnavs, stationary NMR field probes are also capable of measuring local, motion-induced field changes. In this work, a linear model is calibrated between field probe data and motion parameters analog to FIDnav calibration and both tracking methods are compared and combined for PMC.</p><p><strong>Methods: </strong>FIDnavs and field probe navigators were implemented in a fast 3D-EPI sequence and calibrated by a linear model to realignment motion parameters of the 3D-EPI time series. A workflow was established to correct head motion prospectively by FIDnavs, field probe navigators or a combination of both. Large motions were instructed to test the accuracy and the impact on image quality in <math> <semantics><mrow><mn>1</mn> <mspace></mspace> <msup><mtext>mm</mtext> <mn>3</mn></msup> </mrow> <annotation>$$ 1\\kern0.1667em {\\mathrm{mm}}^3 $$</annotation></semantics> </math> EPI data.</p><p><strong>Results: </strong>In a group of five subjects, FIDnavs demonstrated approximately doubled accuracy and precision in comparison with field probe navigators for large motions, especially nodding motions were tracked less accurately by field probes. A combination of both methods could not improve the accuracy consistently. Motion artifacts in high-resolution data were reduced similarly by both PMC methods, although artifacts remained due to susceptibility-induced B0 changes.</p><p><strong>Conclusion: </strong>Stationary field probe navigators can be calibrated equivalently as FIDnavs and enable rapid PMC of large and fast motions. Although they reveal decreased accuracy, their contrast-independence facilitates the potential insertion into many sequences.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30441","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: MR-based FID navigators (FIDnavs) do not require gradient pulses and are attractive for prospective motion correction (PMC) due to short acquisition times and high sampling rates. However, accuracy and precision are limited and depend on a separate calibration measurement. Besides FIDnavs, stationary NMR field probes are also capable of measuring local, motion-induced field changes. In this work, a linear model is calibrated between field probe data and motion parameters analog to FIDnav calibration and both tracking methods are compared and combined for PMC.

Methods: FIDnavs and field probe navigators were implemented in a fast 3D-EPI sequence and calibrated by a linear model to realignment motion parameters of the 3D-EPI time series. A workflow was established to correct head motion prospectively by FIDnavs, field probe navigators or a combination of both. Large motions were instructed to test the accuracy and the impact on image quality in 1 mm 3 $$ 1\kern0.1667em {\mathrm{mm}}^3 $$ EPI data.

Results: In a group of five subjects, FIDnavs demonstrated approximately doubled accuracy and precision in comparison with field probe navigators for large motions, especially nodding motions were tracked less accurately by field probes. A combination of both methods could not improve the accuracy consistently. Motion artifacts in high-resolution data were reduced similarly by both PMC methods, although artifacts remained due to susceptibility-induced B0 changes.

Conclusion: Stationary field probe navigators can be calibrated equivalently as FIDnavs and enable rapid PMC of large and fast motions. Although they reveal decreased accuracy, their contrast-independence facilitates the potential insertion into many sequences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
期刊最新文献
Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 1: In vivo small-animal imaging. Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3-Ex vivo imaging: Data processing, comparisons with microscopy, and tractography. On the RF safety of titanium mesh head implants in 7 T MRI systems: an investigation. 3D joint T1/T1 ρ/T2 mapping and water-fat imaging for contrast-agent free myocardial tissue characterization at 1.5T. Whole liver phase-based R2 mapping in liver iron overload within a breath-hold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1