{"title":"High-throughput screening strategies for plastic-depolymerizing enzymes.","authors":"Maxine Yew, Yifan Yang, Qinhong Wang, Leilei Zhu","doi":"10.1016/j.tibtech.2024.12.008","DOIUrl":null,"url":null,"abstract":"<p><p>A multitude of plastic-depolymerizing microorganisms and enzymes have been discovered in the plastisphere. Identifying and engineering such microbial strains and enzymes necessitate robust and high-throughput screening strategies for developing effective microbial solutions to counter the plastic accumulation problem and decouple the reliance on fossil resources. This review covers new methods and approaches for the effective high-throughput screening of depolymerizing enzymes for various plastics, such as polyethylene terephthalate (PET), polyurethane (PU), and polylactic acid (PLA). We discuss the application scope of the existing methods, as well as potential developments and integration of screening techniques to identify and enhance plastic depolymerases. The prospects for screening a wider range of plastic depolymerases with the advances in biotechnology tools such as droplet microfluidics and biosensors are highlighted.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.12.008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A multitude of plastic-depolymerizing microorganisms and enzymes have been discovered in the plastisphere. Identifying and engineering such microbial strains and enzymes necessitate robust and high-throughput screening strategies for developing effective microbial solutions to counter the plastic accumulation problem and decouple the reliance on fossil resources. This review covers new methods and approaches for the effective high-throughput screening of depolymerizing enzymes for various plastics, such as polyethylene terephthalate (PET), polyurethane (PU), and polylactic acid (PLA). We discuss the application scope of the existing methods, as well as potential developments and integration of screening techniques to identify and enhance plastic depolymerases. The prospects for screening a wider range of plastic depolymerases with the advances in biotechnology tools such as droplet microfluidics and biosensors are highlighted.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).