Fostering effective hybrid human-LLM reasoning and decision making.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1464690
Andrea Passerini, Aryo Gema, Pasquale Minervini, Burcu Sayin, Katya Tentori
{"title":"Fostering effective hybrid human-LLM reasoning and decision making.","authors":"Andrea Passerini, Aryo Gema, Pasquale Minervini, Burcu Sayin, Katya Tentori","doi":"10.3389/frai.2024.1464690","DOIUrl":null,"url":null,"abstract":"<p><p>The impressive performance of modern Large Language Models (LLMs) across a wide range of tasks, along with their often non-trivial errors, has garnered unprecedented attention regarding the potential of AI and its impact on everyday life. While considerable effort has been and continues to be dedicated to overcoming the limitations of current models, the potentials and risks of human-LLM collaboration remain largely underexplored. In this perspective, we argue that enhancing the focus on human-LLM interaction should be a primary target for future LLM research. Specifically, we will briefly examine some of the biases that may hinder effective collaboration between humans and machines, explore potential solutions, and discuss two broader goals-mutual understanding and complementary team performance-that, in our view, future research should address to enhance effective human-LLM reasoning and decision-making.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1464690"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1464690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The impressive performance of modern Large Language Models (LLMs) across a wide range of tasks, along with their often non-trivial errors, has garnered unprecedented attention regarding the potential of AI and its impact on everyday life. While considerable effort has been and continues to be dedicated to overcoming the limitations of current models, the potentials and risks of human-LLM collaboration remain largely underexplored. In this perspective, we argue that enhancing the focus on human-LLM interaction should be a primary target for future LLM research. Specifically, we will briefly examine some of the biases that may hinder effective collaboration between humans and machines, explore potential solutions, and discuss two broader goals-mutual understanding and complementary team performance-that, in our view, future research should address to enhance effective human-LLM reasoning and decision-making.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Examining the integration of artificial intelligence in supply chain management from Industry 4.0 to 6.0: a systematic literature review. The technology acceptance model and adopter type analysis in the context of artificial intelligence. An analysis of artificial intelligence automation in digital music streaming platforms for improving consumer subscription responses: a review. Prediction of outpatient rehabilitation patient preferences and optimization of graded diagnosis and treatment based on XGBoost machine learning algorithm. SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1