{"title":"Joint Effects of Lifestyle Habits and Heavy Metals Exposure on Chronic Stress Among U.S. Adults: Insights from NHANES 2017-2018.","authors":"Esther Ogundipe, Emmanuel Obeng-Gyasi","doi":"10.3390/jox15010007","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic stress, characterized by sustained activation of physiological stress response systems, is a key risk factor for numerous health conditions. Allostatic load (AL), a biomarker of cumulative physiological stress, offers a quantitative measure of this burden. Lifestyle habits such as alcohol consumption and smoking, alongside environmental exposures to toxic metals like lead, cadmium, and mercury, were individually implicated in increasing AL. However, the combined impact of these lifestyle habits and environmental factors remains underexplored, particularly in populations facing co-occurring exposures. This study aims to investigate the joint effects of lifestyle habits and environmental factors on AL, using data from the NHANES 2017-2018 cycle. By employing linear regression and Bayesian Kernel Machine Regression (BKMR), we identify key predictors and explore interaction effects, providing new insights into how cumulative exposures contribute to chronic stress. Results from BKMR analysis underscore the importance of addressing combined exposures, particularly the synergistic effects of cadmium and alcohol consumption, in managing physiological stress.</p><p><strong>Methods: </strong>Descriptive statistics were calculated to summarize the dataset, and multivariate linear regression was performed to assess associations between exposures and AL. BKMR was employed to estimate exposure-response functions and posterior inclusion probabilities (PIPs), focusing on identifying key predictors of AL.</p><p><strong>Results: </strong>Descriptive analysis indicated that the mean levels of lead, cadmium, and mercury were 1.23 µg/dL, 0.49 µg/dL, and 1.37 µg/L, respectively. The mean allostatic load was 3.57. Linear regression indicated that alcohol consumption was significantly associated with increased AL (β = 0.0933; 95% CI [0.0369, 0.1497]; <i>p</i> = 0.001). Other exposures, including lead (β = -0.1056; 95% CI [-0.2518 to 0.0408]; <i>p</i> = 0.157), cadmium (β = -0.0001, 95% CI [-0.2037 to 0.2036], <i>p</i> = 0.999), mercury (β = -0.0149; 95% CI [-0.1175 to 0.0877]; <i>p</i> = 0.773), and smoking (β = 0.0129; 95% CI [-0.0086 to 0.0345]; <i>p</i> = 0.508), were not significant. BKMR analysis confirmed alcohol's strong importance for AL, with a PIP of 0.9996, and highlighted a non-linear effect of cadmium (PIP = 0.7526). The interaction between alcohol and cadmium showed a stronger effect on AL at higher exposure levels. In contrast, lead, mercury, and smoking demonstrated minimal effects on AL.</p><p><strong>Conclusions: </strong>Alcohol consumption and cadmium exposure were identified as key contributors to increased allostatic load, while other exposures showed no significant associations. These findings emphasize the importance of addressing lifestyle habits and environmental factors in managing physiological stress.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chronic stress, characterized by sustained activation of physiological stress response systems, is a key risk factor for numerous health conditions. Allostatic load (AL), a biomarker of cumulative physiological stress, offers a quantitative measure of this burden. Lifestyle habits such as alcohol consumption and smoking, alongside environmental exposures to toxic metals like lead, cadmium, and mercury, were individually implicated in increasing AL. However, the combined impact of these lifestyle habits and environmental factors remains underexplored, particularly in populations facing co-occurring exposures. This study aims to investigate the joint effects of lifestyle habits and environmental factors on AL, using data from the NHANES 2017-2018 cycle. By employing linear regression and Bayesian Kernel Machine Regression (BKMR), we identify key predictors and explore interaction effects, providing new insights into how cumulative exposures contribute to chronic stress. Results from BKMR analysis underscore the importance of addressing combined exposures, particularly the synergistic effects of cadmium and alcohol consumption, in managing physiological stress.
Methods: Descriptive statistics were calculated to summarize the dataset, and multivariate linear regression was performed to assess associations between exposures and AL. BKMR was employed to estimate exposure-response functions and posterior inclusion probabilities (PIPs), focusing on identifying key predictors of AL.
Results: Descriptive analysis indicated that the mean levels of lead, cadmium, and mercury were 1.23 µg/dL, 0.49 µg/dL, and 1.37 µg/L, respectively. The mean allostatic load was 3.57. Linear regression indicated that alcohol consumption was significantly associated with increased AL (β = 0.0933; 95% CI [0.0369, 0.1497]; p = 0.001). Other exposures, including lead (β = -0.1056; 95% CI [-0.2518 to 0.0408]; p = 0.157), cadmium (β = -0.0001, 95% CI [-0.2037 to 0.2036], p = 0.999), mercury (β = -0.0149; 95% CI [-0.1175 to 0.0877]; p = 0.773), and smoking (β = 0.0129; 95% CI [-0.0086 to 0.0345]; p = 0.508), were not significant. BKMR analysis confirmed alcohol's strong importance for AL, with a PIP of 0.9996, and highlighted a non-linear effect of cadmium (PIP = 0.7526). The interaction between alcohol and cadmium showed a stronger effect on AL at higher exposure levels. In contrast, lead, mercury, and smoking demonstrated minimal effects on AL.
Conclusions: Alcohol consumption and cadmium exposure were identified as key contributors to increased allostatic load, while other exposures showed no significant associations. These findings emphasize the importance of addressing lifestyle habits and environmental factors in managing physiological stress.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.