Effectively simplified Adriamycin-induced chronic kidney disease mouse model: Retro-orbital vein injection versus tail-vein injection.

Q1 Health Professions Animal models and experimental medicine Pub Date : 2025-01-22 DOI:10.1002/ame2.12553
Masaki Watanabe, Hayato R Takimoto, Kazuki Hashimoto, Yuki Ishii, Nobuya Sasaki
{"title":"Effectively simplified Adriamycin-induced chronic kidney disease mouse model: Retro-orbital vein injection versus tail-vein injection.","authors":"Masaki Watanabe, Hayato R Takimoto, Kazuki Hashimoto, Yuki Ishii, Nobuya Sasaki","doi":"10.1002/ame2.12553","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the impact of administration routes in establishing the Adriamycin (ADR)-induced chronic kidney disease (CKD) model. Using BALB/c mice, we compared the effects of conventional tail-vein injection (TV10, 10 mg/kg) to those of retro-orbital sinus (orbital vein) injection (OV10, 10 mg/kg; OV8, 8 mg/kg). The results indicated that the OV10 group exhibited CKD pathology similar to the TV10 group, with both groups demonstrating significantly higher urinary albumin/creatinine ratio (p < 0.05), tubular injury (p < 0.05), and degree of renal fibrosis (p < 0.05) than the OV8 group. No significant differences were observed between the OV10 and TV10 groups in urinary albumin/creatinine ratio, tubular injury, and degree of renal fibrosis. These findings demonstrated that retro-orbital administration of 10 mg/kg ADR induces comparable effects to conventional tail-vein administration. This technique's technical simplicity may improve experimental efficiency, reproducibility, and animal welfare in CKD research. In conclusion, this study validates the utility of retro-orbital injection in CKD model establishment, demonstrating its potential to standardize and improve the reliability of future CKD research protocols.</p>","PeriodicalId":93869,"journal":{"name":"Animal models and experimental medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal models and experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ame2.12553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the impact of administration routes in establishing the Adriamycin (ADR)-induced chronic kidney disease (CKD) model. Using BALB/c mice, we compared the effects of conventional tail-vein injection (TV10, 10 mg/kg) to those of retro-orbital sinus (orbital vein) injection (OV10, 10 mg/kg; OV8, 8 mg/kg). The results indicated that the OV10 group exhibited CKD pathology similar to the TV10 group, with both groups demonstrating significantly higher urinary albumin/creatinine ratio (p < 0.05), tubular injury (p < 0.05), and degree of renal fibrosis (p < 0.05) than the OV8 group. No significant differences were observed between the OV10 and TV10 groups in urinary albumin/creatinine ratio, tubular injury, and degree of renal fibrosis. These findings demonstrated that retro-orbital administration of 10 mg/kg ADR induces comparable effects to conventional tail-vein administration. This technique's technical simplicity may improve experimental efficiency, reproducibility, and animal welfare in CKD research. In conclusion, this study validates the utility of retro-orbital injection in CKD model establishment, demonstrating its potential to standardize and improve the reliability of future CKD research protocols.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Pharmacokinetic analysis on compatibility of Atractylodes macrocephala and Paeoniae radix herb pair ameliorates functional constipation model rats using microdialysis with ultra-performance liquid chromatography. Antiviral effects and mechanism of Qi pi pill against influenza viruses. HC-A solution limb perfusion alleviates liver damage induced by limb ischemia-reperfusion injury in pigs. In vivo toxic and lethal cardiorespiratory effects of a synthetic quaternary ammonium salt derivative of haloperidol in mice. A novel model of central precocious puberty disease: Paternal MKRN3 gene-modified rabbit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1