High-throughput markerless pose estimation and home-cage activity analysis of tree shrew using deep learning.

Q1 Health Professions Animal models and experimental medicine Pub Date : 2025-01-23 DOI:10.1002/ame2.12530
Yangzhen Wang, Feng Su, Rixu Cong, Mengna Liu, Kaichen Shan, Xiaying Li, Desheng Zhu, Yusheng Wei, Jiejie Dai, Chen Zhang, Yonglu Tian
{"title":"High-throughput markerless pose estimation and home-cage activity analysis of tree shrew using deep learning.","authors":"Yangzhen Wang, Feng Su, Rixu Cong, Mengna Liu, Kaichen Shan, Xiaying Li, Desheng Zhu, Yusheng Wei, Jiejie Dai, Chen Zhang, Yonglu Tian","doi":"10.1002/ame2.12530","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quantifying the rich home-cage activities of tree shrews provides a reliable basis for understanding their daily routines and building disease models. However, due to the lack of effective behavioral methods, most efforts on tree shrew behavior are limited to simple measures, resulting in the loss of much behavioral information.</p><p><strong>Methods: </strong>To address this issue, we present a deep learning (DL) approach to achieve markerless pose estimation and recognize multiple spontaneous behaviors of tree shrews, including drinking, eating, resting, and staying in the dark house, etc. RESULTS: This high-throughput approach can monitor the home-cage activities of 16 tree shrews simultaneously over an extended period. Additionally, we demonstrated an innovative system with reliable apparatus, paradigms, and analysis methods for investigating food grasping behavior. The median duration for each bout of grasping was 0.20 s.</p><p><strong>Conclusion: </strong>This study provides an efficient tool for quantifying and understand tree shrews' natural behaviors.</p>","PeriodicalId":93869,"journal":{"name":"Animal models and experimental medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal models and experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ame2.12530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Quantifying the rich home-cage activities of tree shrews provides a reliable basis for understanding their daily routines and building disease models. However, due to the lack of effective behavioral methods, most efforts on tree shrew behavior are limited to simple measures, resulting in the loss of much behavioral information.

Methods: To address this issue, we present a deep learning (DL) approach to achieve markerless pose estimation and recognize multiple spontaneous behaviors of tree shrews, including drinking, eating, resting, and staying in the dark house, etc. RESULTS: This high-throughput approach can monitor the home-cage activities of 16 tree shrews simultaneously over an extended period. Additionally, we demonstrated an innovative system with reliable apparatus, paradigms, and analysis methods for investigating food grasping behavior. The median duration for each bout of grasping was 0.20 s.

Conclusion: This study provides an efficient tool for quantifying and understand tree shrews' natural behaviors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Pharmacokinetic analysis on compatibility of Atractylodes macrocephala and Paeoniae radix herb pair ameliorates functional constipation model rats using microdialysis with ultra-performance liquid chromatography. Antiviral effects and mechanism of Qi pi pill against influenza viruses. HC-A solution limb perfusion alleviates liver damage induced by limb ischemia-reperfusion injury in pigs. In vivo toxic and lethal cardiorespiratory effects of a synthetic quaternary ammonium salt derivative of haloperidol in mice. A novel model of central precocious puberty disease: Paternal MKRN3 gene-modified rabbit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1