LM22A-4-loaded smart mesoporous balls enhance neuroprotection and functional recovery after ischemic stroke

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomedicine & Pharmacotherapy Pub Date : 2025-02-01 DOI:10.1016/j.biopha.2025.117863
Jae Ho Lee , Kyeong Hyeon Lee , Ji Hyeon Ryu , Min Jae Kim , Eunji Kim , Seo-Yeon Lee , Sang-Cheol Han , Byung Tae Choi , Yong-Il Shin , Hwa Kyoung Shin
{"title":"LM22A-4-loaded smart mesoporous balls enhance neuroprotection and functional recovery after ischemic stroke","authors":"Jae Ho Lee ,&nbsp;Kyeong Hyeon Lee ,&nbsp;Ji Hyeon Ryu ,&nbsp;Min Jae Kim ,&nbsp;Eunji Kim ,&nbsp;Seo-Yeon Lee ,&nbsp;Sang-Cheol Han ,&nbsp;Byung Tae Choi ,&nbsp;Yong-Il Shin ,&nbsp;Hwa Kyoung Shin","doi":"10.1016/j.biopha.2025.117863","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke is globally recognized as the second leading cause of death, significantly impairing both motor and cognitive functions. Enhancing regeneration after stroke is crucial for restoring these functions and necessitates strategies to promote neuroregeneration to achieve better post-stroke outcomes. Brain-derived neurotrophic factor (BDNF) plays a key role in neuroregeneration by influencing motor ability, learning, memory, and rehabilitation after stroke. However, challenges such as the substantial protein size, short half-life of BDNF, and blood-brain barrier hinder its efficient delivery to the brain. In this study, LM22A-4, a BDNF mimetic, was utilized and delivered through a Smart Mesoporous Ball (SMB-3) system to target the ischemic injured brain and explore its potential therapeutic effects in a mouse ischemic stroke model. Treatment with LM22A-4-loaded SMB-3 (LM22A-4-SMB-3) markedly restored neurological, motor, and cognitive deficits following ischemic stroke compared to LM22A-4 alone. Additionally, administration of LM22A-4-SMB-3 reduced apoptotic cell death and glial activation, as evidenced by the TUNEL assay results, and decreased GFAP and Iba-1 expression levels. Furthermore, the phosphorylation of TrkB and Akt, but not that of Erk, was considerably increased in the LM22A-4-SMB-3-treated group. Treatment also enhanced the number of BrdU+/NeuN+ cells, with a marked reduction in post-stroke brain atrophy. These findings suggest that LM22A-4-SMB-3 can attenuate ischemic damage and recover neurological, motor, and cognitive functions by increasing p-TrkB and p-Akt levels and promoting neurogenesis. Therefore, SMB-3-mediated delivery of LM22A-4 presents a potentially applicable delivery system, and LM22A-4-SMB-3 use could be considered a novel therapeutic strategy to improve post-stroke outcomes.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"183 ","pages":"Article 117863"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225000575","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke is globally recognized as the second leading cause of death, significantly impairing both motor and cognitive functions. Enhancing regeneration after stroke is crucial for restoring these functions and necessitates strategies to promote neuroregeneration to achieve better post-stroke outcomes. Brain-derived neurotrophic factor (BDNF) plays a key role in neuroregeneration by influencing motor ability, learning, memory, and rehabilitation after stroke. However, challenges such as the substantial protein size, short half-life of BDNF, and blood-brain barrier hinder its efficient delivery to the brain. In this study, LM22A-4, a BDNF mimetic, was utilized and delivered through a Smart Mesoporous Ball (SMB-3) system to target the ischemic injured brain and explore its potential therapeutic effects in a mouse ischemic stroke model. Treatment with LM22A-4-loaded SMB-3 (LM22A-4-SMB-3) markedly restored neurological, motor, and cognitive deficits following ischemic stroke compared to LM22A-4 alone. Additionally, administration of LM22A-4-SMB-3 reduced apoptotic cell death and glial activation, as evidenced by the TUNEL assay results, and decreased GFAP and Iba-1 expression levels. Furthermore, the phosphorylation of TrkB and Akt, but not that of Erk, was considerably increased in the LM22A-4-SMB-3-treated group. Treatment also enhanced the number of BrdU+/NeuN+ cells, with a marked reduction in post-stroke brain atrophy. These findings suggest that LM22A-4-SMB-3 can attenuate ischemic damage and recover neurological, motor, and cognitive functions by increasing p-TrkB and p-Akt levels and promoting neurogenesis. Therefore, SMB-3-mediated delivery of LM22A-4 presents a potentially applicable delivery system, and LM22A-4-SMB-3 use could be considered a novel therapeutic strategy to improve post-stroke outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
期刊最新文献
Vagus nerve stimulation: A targeted approach for reducing tissue-specific ischemic reperfusion injury Oregano polyphenols reduce human insulin amyloid aggregation A novel missense mutation Smad4 V354L enhances the efficacy of docetaxel in non-small cell lung cancer Examining the pharmacokinetic and pharmacodynamic interaction of N,N-dimethyltryptamine and harmine in healthy volunteers: Α factorial dose-escalation study Thiopurine S-methyltransferase – An important intersection of drug-drug interactions in thiopurine treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1