Multiplexed single-cell imaging reveals diverging subpopulations with distinct senescence phenotypes during long-term senescence induction

IF 5.3 2区 医学 Q1 GERIATRICS & GERONTOLOGY GeroScience Pub Date : 2025-01-23 DOI:10.1007/s11357-024-01503-7
Garrett A. Sessions, Madeline V. Loops, Brian O. Diekman, Jeremy E. Purvis
{"title":"Multiplexed single-cell imaging reveals diverging subpopulations with distinct senescence phenotypes during long-term senescence induction","authors":"Garrett A. Sessions, Madeline V. Loops, Brian O. Diekman, Jeremy E. Purvis","doi":"10.1007/s11357-024-01503-7","DOIUrl":null,"url":null,"abstract":"<p>Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells. We used multiplex, single-cell imaging to build a proteomic map of senescence induction in human epithelial cells induced to senescence over the course of 31 days. We map how the expression of SASP proteins increases alongside other known senescence markers such as p53, p21, and p16<sup>INK4a</sup>. The aggregated population of cells responded to etoposide with an accumulation of stress response factors over the first 11 days, followed by a plateau in most proteins. At the single-cell level, however, we identified two distinct senescence cell populations, one defined primarily by larger nuclear area and the second by higher protein concentrations. Trajectory inference suggested that cells took one of two discrete molecular paths from unperturbed healthy cells, through a common transitional subpopulation, and ending at the discrete terminal senescence phenotypes. Our results underscore the importance of using single-cell proteomics to identify the mechanistic pathways governing the transition from senescence induction to a mature state of senescence characterized by the SASP.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"108 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-024-01503-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells. We used multiplex, single-cell imaging to build a proteomic map of senescence induction in human epithelial cells induced to senescence over the course of 31 days. We map how the expression of SASP proteins increases alongside other known senescence markers such as p53, p21, and p16INK4a. The aggregated population of cells responded to etoposide with an accumulation of stress response factors over the first 11 days, followed by a plateau in most proteins. At the single-cell level, however, we identified two distinct senescence cell populations, one defined primarily by larger nuclear area and the second by higher protein concentrations. Trajectory inference suggested that cells took one of two discrete molecular paths from unperturbed healthy cells, through a common transitional subpopulation, and ending at the discrete terminal senescence phenotypes. Our results underscore the importance of using single-cell proteomics to identify the mechanistic pathways governing the transition from senescence induction to a mature state of senescence characterized by the SASP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
GeroScience
GeroScience Medicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍: GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.
期刊最新文献
Test of Rapamycin in Aging Dogs (TRIAD): study design and rationale for a prospective, parallel-group, double-masked, randomized, placebo-controlled, multicenter trial of rapamycin in healthy middle-aged dogs from the Dog Aging Project. Adipose chemokine ligand CX3CL1 contributes to maintaining the hippocampal BDNF level, and the effect is attenuated in advanced age Measuring thymic output across the human lifespan: a critical challenge in laboratory medicine A multi-omic single-cell landscape of the aging mouse ovary The role of protective genetic variants in modulating epigenetic aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1