Cytoplasmic mRNA decay controlling inflammatory gene expression is determined by pre-mRNA fate decision

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Cell Pub Date : 2025-01-24 DOI:10.1016/j.molcel.2025.01.001
Annika Bestehorn, Julius von Wirén, Christina Zeiler, Jeanne Fesselet, Sebastian Didusch, Maurizio Forte, Kevin Doppelmayer, Martina Borroni, Anita Le Heron, Sara Scinicariello, WeiQiang Chen, Manuela Baccarini, Vera Pfanzagl, Gijs A. Versteeg, Markus Hartl, Pavel Kovarik
{"title":"Cytoplasmic mRNA decay controlling inflammatory gene expression is determined by pre-mRNA fate decision","authors":"Annika Bestehorn, Julius von Wirén, Christina Zeiler, Jeanne Fesselet, Sebastian Didusch, Maurizio Forte, Kevin Doppelmayer, Martina Borroni, Anita Le Heron, Sara Scinicariello, WeiQiang Chen, Manuela Baccarini, Vera Pfanzagl, Gijs A. Versteeg, Markus Hartl, Pavel Kovarik","doi":"10.1016/j.molcel.2025.01.001","DOIUrl":null,"url":null,"abstract":"The fidelity of immune responses depends on timely controlled and selective mRNA degradation that is largely driven by RNA-binding proteins (RBPs). It remains unclear whether stochastic or directed processes govern the selection of an individual mRNA molecule for degradation. Using human and mouse cells, we show that tristetraprolin (TTP, also known as ZFP36), an essential anti-inflammatory RBP, destabilizes target mRNAs via a hierarchical molecular assembly. The assembly formation strictly relies on the interaction of TTP with RNA. The TTP homolog ZFP36L1 exhibits similar requirements, indicating a broader relevance of this regulatory program. Unexpectedly, the assembly of the cytoplasmic mRNA-destabilization complex is licensed in the nucleus by TTP binding to pre-mRNA, which we identify as the principal TTP target rather than mRNA. Hence, the fate of an inflammation-induced mRNA is decided concomitantly with its synthesis. This mechanism prevents the translation of excessive and potentially harmful inflammation mediators, irrespective of transcription.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"34 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.01.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fidelity of immune responses depends on timely controlled and selective mRNA degradation that is largely driven by RNA-binding proteins (RBPs). It remains unclear whether stochastic or directed processes govern the selection of an individual mRNA molecule for degradation. Using human and mouse cells, we show that tristetraprolin (TTP, also known as ZFP36), an essential anti-inflammatory RBP, destabilizes target mRNAs via a hierarchical molecular assembly. The assembly formation strictly relies on the interaction of TTP with RNA. The TTP homolog ZFP36L1 exhibits similar requirements, indicating a broader relevance of this regulatory program. Unexpectedly, the assembly of the cytoplasmic mRNA-destabilization complex is licensed in the nucleus by TTP binding to pre-mRNA, which we identify as the principal TTP target rather than mRNA. Hence, the fate of an inflammation-induced mRNA is decided concomitantly with its synthesis. This mechanism prevents the translation of excessive and potentially harmful inflammation mediators, irrespective of transcription.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
期刊最新文献
Single-molecule m6A detection empowered by endogenous labeling unveils complexities across RNA isoforms The RNA helicase HrpA rescues collided ribosomes in E. coli The phenylalanine-and-glycine repeats of NUP98 oncofusions form condensates that selectively partition transcriptional coactivators Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus Combinatorial mapping of E3 ubiquitin ligases to their target substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1