Symmetry protected topological phases under decoherence

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-01-23 DOI:10.22331/q-2025-01-23-1607
Jong Yeon Lee, Yi-Zhuang You, Cenke Xu
{"title":"Symmetry protected topological phases under decoherence","authors":"Jong Yeon Lee, Yi-Zhuang You, Cenke Xu","doi":"10.22331/q-2025-01-23-1607","DOIUrl":null,"url":null,"abstract":"We investigate mixed states exhibiting nontrivial topological features, focusing on symmetry-protected topological (SPT) phases under various types of decoherence. Our findings demonstrate that these systems can retain topological information from the SPT ground state despite decoherence. In the ''doubled Hilbert space,'' we define symmetry-protected topological ensembles (SPT ensembles) and examine boundary anomalies in this space. We generalize the concept of the strange correlator, initially used to diagnose SPT ground states, to identify anomalies in mixed-state density matrices. Through exact calculations of stabilizer Hamiltonians and field theory evaluations, we show that nontrivial features of SPT states persist in two types of strange correlators: type-I and type-II. The type-I strange correlator reveals SPT information that can be efficiently detected and used experimentally, such as in preparing long-range entangled states. The type-II strange correlator encodes the full topological response of the decohered mixed state, reflecting the SPT state's pre-decoherence presence. Our work offers a unified framework for understanding decohered SPT phases from an information-theoretic perspective.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"12 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-01-23-1607","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate mixed states exhibiting nontrivial topological features, focusing on symmetry-protected topological (SPT) phases under various types of decoherence. Our findings demonstrate that these systems can retain topological information from the SPT ground state despite decoherence. In the ''doubled Hilbert space,'' we define symmetry-protected topological ensembles (SPT ensembles) and examine boundary anomalies in this space. We generalize the concept of the strange correlator, initially used to diagnose SPT ground states, to identify anomalies in mixed-state density matrices. Through exact calculations of stabilizer Hamiltonians and field theory evaluations, we show that nontrivial features of SPT states persist in two types of strange correlators: type-I and type-II. The type-I strange correlator reveals SPT information that can be efficiently detected and used experimentally, such as in preparing long-range entangled states. The type-II strange correlator encodes the full topological response of the decohered mixed state, reflecting the SPT state's pre-decoherence presence. Our work offers a unified framework for understanding decohered SPT phases from an information-theoretic perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Optimizing Circuit Reusing and its Application in Randomized Benchmarking Symmetry protected topological phases under decoherence Streaming quantum state purification Linear gate bounds against natural functions for position-verification Imperfect quantum networks with tailored resource states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1