Toward Collaborative and Cross-Environment UAV Classification: Federated Semantic Regularization

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2025-01-23 DOI:10.1109/TIFS.2025.3531773
Xue Fu;Yu Wang;Yun Lin;Tomoaki Ohtsuki;Bamidele Adebisi;Guan Gui;Hikmet Sari
{"title":"Toward Collaborative and Cross-Environment UAV Classification: Federated Semantic Regularization","authors":"Xue Fu;Yu Wang;Yun Lin;Tomoaki Ohtsuki;Bamidele Adebisi;Guan Gui;Hikmet Sari","doi":"10.1109/TIFS.2025.3531773","DOIUrl":null,"url":null,"abstract":"The rapid and widespread adoption of unmanned aerial vehicles (UAVs) poses significant threats to public safety and security in sensitive areas and subsequently underscores the urgent need for effective UAV surveillance solutions, where UAV classification emerges as a vital technology. Deep learning (DL) methods can autonomously extract implicit features from UAV signals and subsequently infer their types, provided that sufficient signal samples are available. Due to the high mobility of UAVs, it is challenging to ensure continuous monitoring between UAVs and the surveillance system to obtain sufficient samples. Moreover, DL models developed from sufficient but environment-specific datasets tend to be less generalized. This paper proposes a novel federated semantic regularization for learning an UAV classification model and further classifying UAVs across diverse environmental conditions. The approach enhances model generalization by regularizing semantic features during the local model training process on each participant. Subsequently, these local models are aggregated into a robust global model. Extensive testing across multiple environments demonstrates the superior classification performance of our approach compared to existing non-federated and federated approaches. The average classification accuracy of the proposed method in the three environments is 95.68%, which is improved by 13.39% compared to the non-federated methods and by 2.75% compared to the federated methods.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1624-1635"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10851356/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid and widespread adoption of unmanned aerial vehicles (UAVs) poses significant threats to public safety and security in sensitive areas and subsequently underscores the urgent need for effective UAV surveillance solutions, where UAV classification emerges as a vital technology. Deep learning (DL) methods can autonomously extract implicit features from UAV signals and subsequently infer their types, provided that sufficient signal samples are available. Due to the high mobility of UAVs, it is challenging to ensure continuous monitoring between UAVs and the surveillance system to obtain sufficient samples. Moreover, DL models developed from sufficient but environment-specific datasets tend to be less generalized. This paper proposes a novel federated semantic regularization for learning an UAV classification model and further classifying UAVs across diverse environmental conditions. The approach enhances model generalization by regularizing semantic features during the local model training process on each participant. Subsequently, these local models are aggregated into a robust global model. Extensive testing across multiple environments demonstrates the superior classification performance of our approach compared to existing non-federated and federated approaches. The average classification accuracy of the proposed method in the three environments is 95.68%, which is improved by 13.39% compared to the non-federated methods and by 2.75% compared to the federated methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
Kullback-Liebler Divergence-Based Observer Design Against Sensor Bias Injection Attacks in Single-Output Systems Efficient and Privacy-Preserving Ride Matching over Road Networks against Malicious ORH server Secrecy Coding for the Binary Symmetric Wiretap Channel via Linear Programming Reliable Open-Set Network Traffic Classification Achieving Positive Rate of Covert Communications Covered by Randomly Activated Overt Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1