Simulation of screening characterization of double-deck vibrating screen of slurry TBM tunnelling using integrated CFD-DEM-FEM

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2025-01-21 DOI:10.1016/j.tust.2025.106399
Yidong Guo , Yingran Fang , Xinggao Li , Dalong Jin , Hongzhi Liu
{"title":"Simulation of screening characterization of double-deck vibrating screen of slurry TBM tunnelling using integrated CFD-DEM-FEM","authors":"Yidong Guo ,&nbsp;Yingran Fang ,&nbsp;Xinggao Li ,&nbsp;Dalong Jin ,&nbsp;Hongzhi Liu","doi":"10.1016/j.tust.2025.106399","DOIUrl":null,"url":null,"abstract":"<div><div>To evaluate and optimize the screening characterization of double-deck vibrating screen of slurry TBM tunnelling, a three-dimensional (3D) coupled model of vibrating screen was established based on an integrated CFD-DEM-FEM method in this paper. The transport characteristics of particles and the fluidity of slurry were revealed, and the kinetic response of the screen surfaces was comprehensively analyzed. The results indicated that the particles were evenly distributed on the screen surface, and the velocity of the particles shows a trend of a steady increase in velocity from 0 m/s to 5 m/s. The coarse screen experienced impact forces up to 90 times greater than those on the fine screen, influenced by particle bed formation and collision dynamics, which reduced direct loads on the screen surface. Screening efficiencies of coarse and fine screens stabilized at approximately 61 % and 73 %, with coarse screens exhibiting greater efficiency fluctuations due to the particle size distribution and collisions. The stress and deformation primairly concentrate in the middle position of the screen surface near the feed and discharge ends, highlighting the need for structural reinforcements to enhance strength and stiffness. Lastly, the optimization schemes for each parameters were proposed, and applied to the slurry TBM tunnelling of Qingdao Jiaozhou Bay Second Undersea Tunnel. The findings in this work provide references and suggestions on the efficient operation of double-deck vibrating screen for slurry TBM tunnelling.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"158 ","pages":"Article 106399"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825000379","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To evaluate and optimize the screening characterization of double-deck vibrating screen of slurry TBM tunnelling, a three-dimensional (3D) coupled model of vibrating screen was established based on an integrated CFD-DEM-FEM method in this paper. The transport characteristics of particles and the fluidity of slurry were revealed, and the kinetic response of the screen surfaces was comprehensively analyzed. The results indicated that the particles were evenly distributed on the screen surface, and the velocity of the particles shows a trend of a steady increase in velocity from 0 m/s to 5 m/s. The coarse screen experienced impact forces up to 90 times greater than those on the fine screen, influenced by particle bed formation and collision dynamics, which reduced direct loads on the screen surface. Screening efficiencies of coarse and fine screens stabilized at approximately 61 % and 73 %, with coarse screens exhibiting greater efficiency fluctuations due to the particle size distribution and collisions. The stress and deformation primairly concentrate in the middle position of the screen surface near the feed and discharge ends, highlighting the need for structural reinforcements to enhance strength and stiffness. Lastly, the optimization schemes for each parameters were proposed, and applied to the slurry TBM tunnelling of Qingdao Jiaozhou Bay Second Undersea Tunnel. The findings in this work provide references and suggestions on the efficient operation of double-deck vibrating screen for slurry TBM tunnelling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Development and application of air-assisted spraying device for dust suppression on tunnel boring machine Multi-scale investigation on tunnel face failure and soil arching in unsaturated sandy ground Study on the control effect of tunnel large deformation considering surrounding rock unloading expansion effect and support structure characteristics Relationship between the built environment and metro usage patterns: A motif-based perspective Experimental investigation of 15.5-m prototype segment lining structures: The load equivalent method and in-situ verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1