Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane).

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-01-23 DOI:10.1021/acsabm.4c01380
Tzu-Ying Liao, Andrew Boden, Peter C King, Helmut Thissen, Russell J Crawford, Elena P Ivanova, Peter Kingshott
{"title":"Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane).","authors":"Tzu-Ying Liao, Andrew Boden, Peter C King, Helmut Thissen, Russell J Crawford, Elena P Ivanova, Peter Kingshott","doi":"10.1021/acsabm.4c01380","DOIUrl":null,"url":null,"abstract":"<p><p>Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness. Specifically, relatively low nozzle scanning speeds were used to develop high-density Mo-embedded PDMS surfaces. A comprehensive analysis was conducted to investigate how cold-spray processing parameters affect the surface topography, wettability, and chemical properties. The ability of the Mo-embedded PDMS to inhibit the colonization of <i>Staphylococcus aureus</i>, <i>Staphylococcus epidermidis</i>, <i>Escherichia coli</i>, and <i>Pseudomonas aeruginosa</i> bacterial species was demonstrated by both live/dead staining and disk diffusion methods. Surfaces with higher Mo loading densities significantly reduced the level of bacterial attachment and enhanced the bactericidal activity upon contact. Also, the level of Mo ion release over a 14-day period was measured and correlated to the properties of the substrate surface. Furthermore, attachment, viability, and proliferation of osteoblast-like MG63 cells were assessed to investigate the effect of Mo ion release on the biocompatibility of fabricated coatings. A notable decrease in cell viability and delayed growth of MG63 cells became evident after 7 days of incubation with the highly Mo-loaded samples. While this study enhanced our understanding regarding the engineering of composite materials for combatting microbial infections, the findings also suggest that the release of Mo ions may detrimentally affect osteoblast survival, potentially compromising the long-term functionality of orthopedic implants produced using this technique.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness. Specifically, relatively low nozzle scanning speeds were used to develop high-density Mo-embedded PDMS surfaces. A comprehensive analysis was conducted to investigate how cold-spray processing parameters affect the surface topography, wettability, and chemical properties. The ability of the Mo-embedded PDMS to inhibit the colonization of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa bacterial species was demonstrated by both live/dead staining and disk diffusion methods. Surfaces with higher Mo loading densities significantly reduced the level of bacterial attachment and enhanced the bactericidal activity upon contact. Also, the level of Mo ion release over a 14-day period was measured and correlated to the properties of the substrate surface. Furthermore, attachment, viability, and proliferation of osteoblast-like MG63 cells were assessed to investigate the effect of Mo ion release on the biocompatibility of fabricated coatings. A notable decrease in cell viability and delayed growth of MG63 cells became evident after 7 days of incubation with the highly Mo-loaded samples. While this study enhanced our understanding regarding the engineering of composite materials for combatting microbial infections, the findings also suggest that the release of Mo ions may detrimentally affect osteoblast survival, potentially compromising the long-term functionality of orthopedic implants produced using this technique.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
An Injectable Alginate Hydrogel Modified by Collagen and Fibronectin for Better Cellular Environment. Durable Bio-Based Hydrophobic Recrystallized Wax Coatings. Effect of Gadolinium Doping on the Optical and Magnetic Properties of Red-Emitting Dual-Mode Carbon Dot-Based Probes for Magnetic Resonance Imaging. Design and Engineering of Silver Nanomushroom Arrays as a Universal Solid-State SERS Platform for the Label-Free, Sensitive, and Quantitative Detection of Trace Proteins. Excision of HIV-1 Provirus in Human Primary Cells with Nanocapsuled TALEN Proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1