Chengge Fang, Ling Ma, Timson Chen, Ya Chen, Zhizhen Li, Xiaodong Yan, Jing Wang
{"title":"Thiol-Enhanced Interfacial and Internal Deposition of Metal-Polyphenol Networks for Permanent Hair Dyeing.","authors":"Chengge Fang, Ling Ma, Timson Chen, Ya Chen, Zhizhen Li, Xiaodong Yan, Jing Wang","doi":"10.1021/acsbiomaterials.4c01973","DOIUrl":null,"url":null,"abstract":"<p><p>Metal polyphenolic networks (MPNs) are becoming more and more attractive for nontoxic hair dyeing, but their coloring effect is not satisfactory because of the limited interfacial deposition and the absence of internal deposition. Moreover, there is a lack of understanding of the driving factors of the interfacial deposition of MPNs on hair. Herein, we develop a simple yet efficient strategy that transforms disulfide bonds of the hair into thiol groups by thioglycolic acid (TGA) to highly enhance the coloring effect of MPNs at a low temperature. The highly reactive thiol groups react with Fe<sup>2+</sup> to form Fe-S bonds, greatly facilitating the interfacial and internal deposition of MPNs and thus resulting in rapid coloration and high darkness. Moreover, the TGA-assisted MPNs-dyed (TGA/MPN) hair shows high resistance to washing with a shampoo. Further, it is found that the connection of thiol groups to the MPNs endows the TGA/MPN hair with similar mechanical and structural properties to the natural white hair and even enables simultaneous hair dyeing and perming. This study offers a novel universal strategy for hair dyeing and permeation with MPNs.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01973","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Metal polyphenolic networks (MPNs) are becoming more and more attractive for nontoxic hair dyeing, but their coloring effect is not satisfactory because of the limited interfacial deposition and the absence of internal deposition. Moreover, there is a lack of understanding of the driving factors of the interfacial deposition of MPNs on hair. Herein, we develop a simple yet efficient strategy that transforms disulfide bonds of the hair into thiol groups by thioglycolic acid (TGA) to highly enhance the coloring effect of MPNs at a low temperature. The highly reactive thiol groups react with Fe2+ to form Fe-S bonds, greatly facilitating the interfacial and internal deposition of MPNs and thus resulting in rapid coloration and high darkness. Moreover, the TGA-assisted MPNs-dyed (TGA/MPN) hair shows high resistance to washing with a shampoo. Further, it is found that the connection of thiol groups to the MPNs endows the TGA/MPN hair with similar mechanical and structural properties to the natural white hair and even enables simultaneous hair dyeing and perming. This study offers a novel universal strategy for hair dyeing and permeation with MPNs.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture