Rapid-Scan Fourier Transform Infrared Difference Spectroscopy with Two-Dimensional Correlation Analysis to Show the Build-Up of Light-Adapted States in Bacterial Photosynthetic Reaction Centers.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Applied Spectroscopy Pub Date : 2025-05-01 Epub Date: 2025-01-24 DOI:10.1177/00037028241304806
Alberto Mezzetti, Marco Malferrari, Giovanni Venturoli, Francesco Francia, Winfried Leibl, Isao Noda
{"title":"Rapid-Scan Fourier Transform Infrared Difference Spectroscopy with Two-Dimensional Correlation Analysis to Show the Build-Up of Light-Adapted States in Bacterial Photosynthetic Reaction Centers.","authors":"Alberto Mezzetti, Marco Malferrari, Giovanni Venturoli, Francesco Francia, Winfried Leibl, Isao Noda","doi":"10.1177/00037028241304806","DOIUrl":null,"url":null,"abstract":"<p><p>Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from <i>Rhodobacter sphaeroides</i> under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state P<sup>+</sup>Q<sub>A</sub><sup>-</sup> to the neutral state PQ<sub>A</sub>, the use of a 20.5 s continuous light from a lamp made it possible to follow both the build-up of a steady-state P<sup>+</sup>Q<sub>A</sub><sup>-</sup> population and its decay to PQ<sub>A</sub>. Comparison between P<sup>+</sup>Q<sub>A</sub><sup>-</sup>/PQ<sub>A</sub> FT-IR difference spectra obtained under (or 650 ms after) continuous illumination and obtained after one laser flash show small but meaningful differences, reflecting structural changes in the light-adapted state produced by the 20.5 s period of illumination. These differences are strikingly similar to those observed when comparing FT-IR difference spectra reflecting charge separation in photosystem II in light-adapted states and non-light-adapted states (c.f. Sipka et al., \"Light-Adapted Charge-Separated State of Photosystem II: Structural and Functional Dynamics of the Closed Reaction Center\". Plant Cell. 2021. 33(4): 1286-1302). Two-dimensional correlation spectroscopy analysis revealed that in all the observed series of time-resolved FT-IR difference spectra (under illumination, after illumination, and after a laser flash), marker bands at 1749, 1716, and 1668 cm<sup>-1</sup> all evolve synchronously, demonstrating that electron transfer reactions and protein backbone response (at least the one reflected by the 1668 cm<sup>-1</sup> band) are strongly correlated. Conversely, for spectra under and after continuous illumination, many asynchronicities are observed for (still unassigned) bands throughout the whole 1740-1200 cm<sup>-1</sup> region, reflecting a more complicated molecular scenario in the RC upon build-up of the light-adapted state and during its relaxation to the resting neutral state.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"756-766"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241304806","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state P+QA- to the neutral state PQA, the use of a 20.5 s continuous light from a lamp made it possible to follow both the build-up of a steady-state P+QA- population and its decay to PQA. Comparison between P+QA-/PQA FT-IR difference spectra obtained under (or 650 ms after) continuous illumination and obtained after one laser flash show small but meaningful differences, reflecting structural changes in the light-adapted state produced by the 20.5 s period of illumination. These differences are strikingly similar to those observed when comparing FT-IR difference spectra reflecting charge separation in photosystem II in light-adapted states and non-light-adapted states (c.f. Sipka et al., "Light-Adapted Charge-Separated State of Photosystem II: Structural and Functional Dynamics of the Closed Reaction Center". Plant Cell. 2021. 33(4): 1286-1302). Two-dimensional correlation spectroscopy analysis revealed that in all the observed series of time-resolved FT-IR difference spectra (under illumination, after illumination, and after a laser flash), marker bands at 1749, 1716, and 1668 cm-1 all evolve synchronously, demonstrating that electron transfer reactions and protein backbone response (at least the one reflected by the 1668 cm-1 band) are strongly correlated. Conversely, for spectra under and after continuous illumination, many asynchronicities are observed for (still unassigned) bands throughout the whole 1740-1200 cm-1 region, reflecting a more complicated molecular scenario in the RC upon build-up of the light-adapted state and during its relaxation to the resting neutral state.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速扫描傅里叶变换红外差分光谱与二维相关分析显示光适应状态在细菌光合反应中心的建立。
在固定水化条件下(相对湿度为76%),对球形红杆菌的光合反应中心(RCs)进行光照,记录了时间分辨、快速扫描的傅里叶变换红外(FT-IR)差分光谱。采用了两种不同的照明方案。然而,使用激光闪光(持续时间:7 ns)可以跟踪光诱导状态P+QA-到中性状态PQA的重组动力学,使用来自灯的20.5 s连续光可以跟踪稳态P+QA-种群的建立及其衰变到PQA。连续照射(或照射后650 ms)与一次激光照射后的P+QA-/PQA FT-IR差谱比较,差异虽小但有意义,反映了20.5 s照射周期下光适应状态的结构变化。这些差异与比较光系统II在适应光状态和非适应光状态下反映电荷分离的FT-IR差异光谱时观察到的差异惊人地相似(c.f. Sipka等人,“光系统II的适应光的电荷分离状态:封闭反应中心的结构和功能动力学”)。《植物细胞》,2021。33(4): 1286 - 1302)。二维相关光谱分析表明,在所有观测到的时间分辨FT-IR差分光谱序列(光照、光照后和激光照射后)中,1749、1716和1668 cm-1的标记带都是同步进化的,表明电子转移反应与蛋白质骨架响应(至少是1668 cm-1波段反映的)是强相关的。相反,对于连续照明下和之后的光谱,在整个1740-1200 cm-1区域(仍未分配)的波段中观察到许多不同步,反映了RC在光适应状态的建立和弛豫到静息中性状态期间的更复杂的分子场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
期刊最新文献
EXPRESS: Convolutional Autoencoder for Automated Pre-Processing of Tumor Cell and Tissue Raman Spectra. EXPRESS: Identification and Quantification of Trace Metal Speciation in Sediments Using Hyperspectral Imaging. Understanding the Role of the Evanescent Field in Attenuated Total Reflection (ATR) Spectroscopy. Quenching-Independent Two-Photon Absorption Laser-Induced Fluorescence Measurements of Atomic Oxygen in High-Enthalpy Air/Carbon Gas-Surface Interaction. Fourier Transform Infrared Microspectroscopy as a Liquid Biopsy Tool to Detect Single Circulating Tumour Cells in the Blood of a Lung Cancer Patient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1