{"title":"A handheld milk conductivity sensing device (Mylee) for measuring secretory activation progress in lactating women: a device validation study.","authors":"Sharon Haramati, Anastasia Firsow, Daniela Abigail Navarro, Ravid Shechter","doi":"10.1186/s12884-025-07141-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human milk electrolytes are known biomarkers of stages of lactation in the first weeks after birth. However, methods for measuring milk electrolytes are available only in laboratory or expert settings. A small handheld milk sensing device (Mylee) capable of determining on-site individual secretory activation progress from sensing the conductivity of a tiny milk specimen was developed. Here we evaluate the validity of a novel milk-sensing device (Mylee) for measuring the progress of milk maturation and secretory activation status.</p><p><strong>Methods: </strong>Retrospective data analysis of laboratory records generated using the Mylee device. Device conductivity measurements were assessed for accuracy, reliability and stability in rigorous laboratory tests with standard materials. A set of human milk specimens (n = 167) was used to analyze the agreement between the milk maturation score and laboratory measurements of the secretory activation biomarker milk sodium [Na+].</p><p><strong>Results: </strong>The Mylee device was demonstrated to have excellent reproducibility (CV<sub>95%<</sub>5%) and accuracy (error < 5%) for conductivity measurements of a small specimen (350 µl), with good device stability and almost perfect inter-device unit reliability (ICC > 0.90). With regression analysis, we revealed excellent agreement between Mylee milk maturation (MM%) output or its raw conductivity signal and laboratory measurements of conductivity and sodium [Na+] in a dataset of milk specimens (n = 167; R<sup>2</sup> > 0.9). The Mylee MM% score showed good predictive ability for secretary activation status, as determined by sodium threshold (18 mmol/L) in human milk specimens.</p><p><strong>Conclusions: </strong>In this study, we demonstrated the reliability and validity of the Mylee device and its ability to detect on-site milk secretory activation in a manner comparable to that of electrolyte-based methods. The novel MyLee device offers the potential to generate real-time information about the lactation stage, measured by mothers at the commodity of their home.</p>","PeriodicalId":9033,"journal":{"name":"BMC Pregnancy and Childbirth","volume":"25 1","pages":"60"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pregnancy and Childbirth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12884-025-07141-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Human milk electrolytes are known biomarkers of stages of lactation in the first weeks after birth. However, methods for measuring milk electrolytes are available only in laboratory or expert settings. A small handheld milk sensing device (Mylee) capable of determining on-site individual secretory activation progress from sensing the conductivity of a tiny milk specimen was developed. Here we evaluate the validity of a novel milk-sensing device (Mylee) for measuring the progress of milk maturation and secretory activation status.
Methods: Retrospective data analysis of laboratory records generated using the Mylee device. Device conductivity measurements were assessed for accuracy, reliability and stability in rigorous laboratory tests with standard materials. A set of human milk specimens (n = 167) was used to analyze the agreement between the milk maturation score and laboratory measurements of the secretory activation biomarker milk sodium [Na+].
Results: The Mylee device was demonstrated to have excellent reproducibility (CV95%<5%) and accuracy (error < 5%) for conductivity measurements of a small specimen (350 µl), with good device stability and almost perfect inter-device unit reliability (ICC > 0.90). With regression analysis, we revealed excellent agreement between Mylee milk maturation (MM%) output or its raw conductivity signal and laboratory measurements of conductivity and sodium [Na+] in a dataset of milk specimens (n = 167; R2 > 0.9). The Mylee MM% score showed good predictive ability for secretary activation status, as determined by sodium threshold (18 mmol/L) in human milk specimens.
Conclusions: In this study, we demonstrated the reliability and validity of the Mylee device and its ability to detect on-site milk secretory activation in a manner comparable to that of electrolyte-based methods. The novel MyLee device offers the potential to generate real-time information about the lactation stage, measured by mothers at the commodity of their home.
期刊介绍:
BMC Pregnancy & Childbirth is an open access, peer-reviewed journal that considers articles on all aspects of pregnancy and childbirth. The journal welcomes submissions on the biomedical aspects of pregnancy, breastfeeding, labor, maternal health, maternity care, trends and sociological aspects of pregnancy and childbirth.