{"title":"Cellular senescence in the tumor with a bone niche microenvironment: friend or foe?","authors":"Sajad Alavimanesh, Negar Nayerain Jazi, Maedeh Choubani, Farzane Saeidi, Hamed Afkhami, Aref Yarahmadi, Hossein Ronaghi, Pouria Khani, Mohammad Hossein Modarressi","doi":"10.1007/s10238-025-01564-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment. Though senescence would eventually halt the growth of cancerous potential cells, SASP contributes to the tumor environment by promoting inflammation, matrix remodeling, and tumor cell invasion. The paradox of tumor prevention/promotion is particularly relevant to the bone niche tumor microenvironment, where longer-lasting, chronic inflammation promotes tumor formation. Insights into a mechanistic understanding of cellular senescence and SASP provide the basis for targeted therapies, such as senolytics, which aim to eliminate senescent cells, or SASP inhibitors, which would eliminate the tumor-promoting effects of senescence. These therapeutic interventions offer significant clinical implications for treating cancer and healthy aging.</p>","PeriodicalId":10337,"journal":{"name":"Clinical and Experimental Medicine","volume":"25 1","pages":"44"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10238-025-01564-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment. Though senescence would eventually halt the growth of cancerous potential cells, SASP contributes to the tumor environment by promoting inflammation, matrix remodeling, and tumor cell invasion. The paradox of tumor prevention/promotion is particularly relevant to the bone niche tumor microenvironment, where longer-lasting, chronic inflammation promotes tumor formation. Insights into a mechanistic understanding of cellular senescence and SASP provide the basis for targeted therapies, such as senolytics, which aim to eliminate senescent cells, or SASP inhibitors, which would eliminate the tumor-promoting effects of senescence. These therapeutic interventions offer significant clinical implications for treating cancer and healthy aging.
期刊介绍:
Clinical and Experimental Medicine (CEM) is a multidisciplinary journal that aims to be a forum of scientific excellence and information exchange in relation to the basic and clinical features of the following fields: hematology, onco-hematology, oncology, virology, immunology, and rheumatology. The journal publishes reviews and editorials, experimental and preclinical studies, translational research, prospectively designed clinical trials, and epidemiological studies. Papers containing new clinical or experimental data that are likely to contribute to changes in clinical practice or the way in which a disease is thought about will be given priority due to their immediate importance. Case reports will be accepted on an exceptional basis only, and their submission is discouraged. The major criteria for publication are clarity, scientific soundness, and advances in knowledge. In compliance with the overwhelmingly prevailing request by the international scientific community, and with respect for eco-compatibility issues, CEM is now published exclusively online.