{"title":"Enhancing High-Level Food-Grade Expression of Glutamate Decarboxylase and Its Application in the Production of γ-Aminobutyric Acid.","authors":"Kang Zhang, Huihui Lv, Xinrui Yu, Xuyang Zhu, Sheng Chen, Jing Wu","doi":"10.4014/jmb.2410.10013","DOIUrl":null,"url":null,"abstract":"<p><p>Gamma-aminobutyric acid (GABA), a non-proteinogenic amino acid, exhibits diverse physiological functions and finds extensive applications in food, medicine, and various industries. Glutamate decarboxylase (GAD) can effectively convert L-glutamic acid (L-Glu) or monosodium glutamate (MSG) into GABA. However, the low food-grade expression of GAD has hindered large-scale GABA production. In this study, we aimed to elevate GAD expression in <i>Bacillus subtilis</i> through cofactor synthesis enhancement, CRISPRi-based host strain modification, and fermentation optimization. In a 3-L fermenter, the optimized strain achieved a remarkable GAD activity of 319.62 U/ml without antibiotic selection pressure, representing the highest reported food-grade expression to date. Subsequently, enzymatic property analysis facilitated the optimization of GABA production using MSG and L-Glu as substrates, achieving 100% molar conversion yields of 274.40 g/l and 481.62 g/l, respectively, with the latter yielding an unprecedented productivity of 48.16 g/l/h. Finally, <i>in vitro</i> fermentation demonstrated that GABA supplementation promoted gut microbial growth and increased the relative abundance of <i>Actinobacteriota</i> and <i>Bacteroidota</i>.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2410013"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2410.10013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gamma-aminobutyric acid (GABA), a non-proteinogenic amino acid, exhibits diverse physiological functions and finds extensive applications in food, medicine, and various industries. Glutamate decarboxylase (GAD) can effectively convert L-glutamic acid (L-Glu) or monosodium glutamate (MSG) into GABA. However, the low food-grade expression of GAD has hindered large-scale GABA production. In this study, we aimed to elevate GAD expression in Bacillus subtilis through cofactor synthesis enhancement, CRISPRi-based host strain modification, and fermentation optimization. In a 3-L fermenter, the optimized strain achieved a remarkable GAD activity of 319.62 U/ml without antibiotic selection pressure, representing the highest reported food-grade expression to date. Subsequently, enzymatic property analysis facilitated the optimization of GABA production using MSG and L-Glu as substrates, achieving 100% molar conversion yields of 274.40 g/l and 481.62 g/l, respectively, with the latter yielding an unprecedented productivity of 48.16 g/l/h. Finally, in vitro fermentation demonstrated that GABA supplementation promoted gut microbial growth and increased the relative abundance of Actinobacteriota and Bacteroidota.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.