Maintenance of Genetic Diversity Despite Population Fluctuations in the Lesser Prairie-Chicken (Tympanuchus pallidicinctus)

IF 2.3 2区 生物学 Q2 ECOLOGY Ecology and Evolution Pub Date : 2025-01-23 DOI:10.1002/ece3.70879
Andrew J. Lawrence, Scott A. Carleton, Sara J. Oyler-McCance, Randy W. DeYoung, Clay T. Nichols, Timothy F. Wright
{"title":"Maintenance of Genetic Diversity Despite Population Fluctuations in the Lesser Prairie-Chicken (Tympanuchus pallidicinctus)","authors":"Andrew J. Lawrence,&nbsp;Scott A. Carleton,&nbsp;Sara J. Oyler-McCance,&nbsp;Randy W. DeYoung,&nbsp;Clay T. Nichols,&nbsp;Timothy F. Wright","doi":"10.1002/ece3.70879","DOIUrl":null,"url":null,"abstract":"<p>Assessments of genetic diversity, structure, history, and effective population size (<i>N</i><sub>e</sub>) are critical for the conservation of imperiled populations. The lesser prairie-chicken (<i>Tympanuchus pallidicinctus</i>) has experienced declines due to habitat loss, degradation, and fragmentation in addition to substantial population fluctuations with unknown effects on genetic diversity. Our objectives were to: (i) compare genetic diversity across three temporally discrete sampling periods (2002, 2007–2010, and 2013–2014) that are characterized by low or high population abundance; (ii) examine genetic diversity at lek and lek cluster spatial scales; (ii) identify potential bottlenecks and characterize genetic structure and relatedness; and (iii) estimate the regional <i>N</i><sub>e</sub>. We analyzed 194 samples across the shinnery oak prairie region of eastern New Mexico and western Texas using 13 microsatellite loci. Mean heterozygosity, allelic richness, and inbreeding coefficient were not significantly different between discrete sampling periods, suggesting that this population has maintained its genetic diversity across the sampled population fluctuations. We did not detect genetic structure using multiple Bayesian clustering approaches. Furthermore, there was no support for recent genetic bottlenecks, and we estimated that the <i>N</i><sub>e</sub> ranged from 229.5 (<i>p</i><sub>crit</sub> = 0.05, 95% CIs = 121.2–1023.1) to 349.1 (<i>p</i><sub>crit</sub> = 0.02, 95% CIs = 176.4–2895.2) during our final sampling period (2013–2014). Although we provide evidence for gene flow within this region, continued habitat loss and fragmentation that leads to population declines and isolation could increase the risk of genetic consequences. Continued monitoring of genetic diversity and increasing available habitat that supports robust populations of lesser prairie-chickens may improve the likelihood of the species' persistence.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757004/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70879","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Assessments of genetic diversity, structure, history, and effective population size (Ne) are critical for the conservation of imperiled populations. The lesser prairie-chicken (Tympanuchus pallidicinctus) has experienced declines due to habitat loss, degradation, and fragmentation in addition to substantial population fluctuations with unknown effects on genetic diversity. Our objectives were to: (i) compare genetic diversity across three temporally discrete sampling periods (2002, 2007–2010, and 2013–2014) that are characterized by low or high population abundance; (ii) examine genetic diversity at lek and lek cluster spatial scales; (ii) identify potential bottlenecks and characterize genetic structure and relatedness; and (iii) estimate the regional Ne. We analyzed 194 samples across the shinnery oak prairie region of eastern New Mexico and western Texas using 13 microsatellite loci. Mean heterozygosity, allelic richness, and inbreeding coefficient were not significantly different between discrete sampling periods, suggesting that this population has maintained its genetic diversity across the sampled population fluctuations. We did not detect genetic structure using multiple Bayesian clustering approaches. Furthermore, there was no support for recent genetic bottlenecks, and we estimated that the Ne ranged from 229.5 (pcrit = 0.05, 95% CIs = 121.2–1023.1) to 349.1 (pcrit = 0.02, 95% CIs = 176.4–2895.2) during our final sampling period (2013–2014). Although we provide evidence for gene flow within this region, continued habitat loss and fragmentation that leads to population declines and isolation could increase the risk of genetic consequences. Continued monitoring of genetic diversity and increasing available habitat that supports robust populations of lesser prairie-chickens may improve the likelihood of the species' persistence.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
期刊最新文献
First Records of Wild Octopus (Octopus vulgaris) Preying on Adult Invasive Blue Crabs (Callinectes sapidus) Study on the Genetic Diversity Characteristics of the Endemic Plant Rhododendron bailiense in Guizhou, China Based on SNP Molecular Markers A Leopard Cub (Panthera pardus kotiya) Adopted by Kin and Non-Kin Leopardesses Consecutively Seasonal Variation in the β-Diversity of Periphytic Algae and Its Response to Landscape Patterns in the Chishui River, a Naturally Flowing Tributary of the Upper Yangtze River Bacterial Community Structure in Soils With Fire-Deposited Charcoal Under Rotational Shifting Cultivation of Upland Rice in Northern Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1