Keith E Campagno, Wennan Lu, Puttipong Sripinun, Farraj Albalawi, Aurora Cenaj, Claire H Mitchell
{"title":"Priming and release of cytokine IL-1β in microglial cells from the retina.","authors":"Keith E Campagno, Wennan Lu, Puttipong Sripinun, Farraj Albalawi, Aurora Cenaj, Claire H Mitchell","doi":"10.1016/j.exer.2025.110246","DOIUrl":null,"url":null,"abstract":"<p><p>The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from CX3CR1<sup>+/GFP</sup> mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level. Isolated retinal microglia were ramified and expressed low levels of polarization markers unless provoked. Over 90% of isolated microglial cells expressed P2X7R, with cytoplasmic Ca<sup>2+</sup> elevation following receptor stimulation. ATP induced a dose-dependent release of IL-1β from primed microglial cells that was blocked by P2X7R antagonist A839977 and emulated by agonist BzATP. P2X7R stimulation also primed Il1b mRNA in isolated microglia cells. BzATP increased IL-1β immunostaining and GFP fluorescence throughout lamina of retinal wholemounts from CX3CR1<sup>+/GFP</sup> mice. Some of the IL-1β and GFP signals colocalized, particularly in the outer retina, and in projections extending distally through photoreceptor layers. The inner retina had more microglia without IL-1β, and more IL-1β staining without microglia. Substantial IL-1β release was also detected from rat retinal microglial cells, but not optic nerve head astrocytes. In summary, this study implicates microglial cells as a key source of released IL-1β when levels of extracellular ATP are increased following retinal damage, and suggest a greater participation in the outer retina.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110246"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110246","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from CX3CR1+/GFP mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level. Isolated retinal microglia were ramified and expressed low levels of polarization markers unless provoked. Over 90% of isolated microglial cells expressed P2X7R, with cytoplasmic Ca2+ elevation following receptor stimulation. ATP induced a dose-dependent release of IL-1β from primed microglial cells that was blocked by P2X7R antagonist A839977 and emulated by agonist BzATP. P2X7R stimulation also primed Il1b mRNA in isolated microglia cells. BzATP increased IL-1β immunostaining and GFP fluorescence throughout lamina of retinal wholemounts from CX3CR1+/GFP mice. Some of the IL-1β and GFP signals colocalized, particularly in the outer retina, and in projections extending distally through photoreceptor layers. The inner retina had more microglia without IL-1β, and more IL-1β staining without microglia. Substantial IL-1β release was also detected from rat retinal microglial cells, but not optic nerve head astrocytes. In summary, this study implicates microglial cells as a key source of released IL-1β when levels of extracellular ATP are increased following retinal damage, and suggest a greater participation in the outer retina.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.