Balancing act: optimizing blue light for melanogenesis while minimizing cellular damage in primary human skin cells.

IF 3.2 3区 医学 Q2 PHYSIOLOGY Frontiers in Physiology Pub Date : 2025-01-09 eCollection Date: 2024-01-01 DOI:10.3389/fphys.2024.1513054
Augustin C Barolet, Brice Magne, Karel Ferland, Natallia E Uzunbajakava, Daniel Barolet, Lucie Germain
{"title":"Balancing act: optimizing blue light for melanogenesis while minimizing cellular damage in primary human skin cells.","authors":"Augustin C Barolet, Brice Magne, Karel Ferland, Natallia E Uzunbajakava, Daniel Barolet, Lucie Germain","doi":"10.3389/fphys.2024.1513054","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Recent findings show that visible light, particularly blue light, stimulates melanogenesis in human skin, though the underlying mechanisms remain debated. This study aimed to determine the cell damage threshold of non-ionizing blue light on keratinocytes while preserving their ability to stimulate melanogenesis.</p><p><strong>Methods: </strong>Human keratinocytes (N = 3) and melanocytes (N = 3) were isolated from skin samples of varying Fitzpatrick skin phototypes and irradiated with blue light (λpeak = 457 nm) and UVA light (λpeak = 385 nm). Cellular metabolic activity was assessed using the AlamarBlue HS assay, α-Melanocyte-Stimulating Hormone (α-MSH) production by keratinocytes was quantified using ELISA, and Western blotting was used to assess pro-melanogenic factor expression in melanocytes.</p><p><strong>Results: </strong>High blue light intensity (50 mW/cm<sup>2</sup>, 50 J/cm<sup>2</sup>) and UVA light (15 mW/cm<sup>2</sup>, 20 J/cm<sup>2</sup>) significantly reduced cellular metabolic activity, with a 0.86 ± 0.055 and 0.60 ± 0.031 (mean ± SD) fold decrease compared to their respective sham by day 7. In contrast, moderate blue light intensities (5-15 mW/cm<sup>2</sup>, 10-20 J/cm<sup>2</sup>) preserved cellular metabolic activity while stimulating α-MSH production, with an optimal balance achieved at 10 mW/cm<sup>2</sup>, 15 J/cm<sup>2</sup> (1.14 ± 0.046 fold increase relative to sham on day 7). Co-culture experiments confirmed that irradiated keratinocytes enhanced melanogenesis in melanocytes via paracrine signaling, increasing the expression of Tyrosinase and Dopachrome Tautomerase (DCT). Direct blue light irradiation on melanocytes also increased pigmentation without significant cellular damage.</p><p><strong>Discussion: </strong>Moderate-intensity blue light at 10 mW/cm<sup>2</sup>, 15 J/cm<sup>2</sup> effectively stimulates melanogenesis while maintaining cellular metabolic activity in both keratinocytes and melanocytes, offering a promising, safe approach for blue light therapies targeting pigmentation disorders.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"15 ","pages":"1513054"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1513054","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Recent findings show that visible light, particularly blue light, stimulates melanogenesis in human skin, though the underlying mechanisms remain debated. This study aimed to determine the cell damage threshold of non-ionizing blue light on keratinocytes while preserving their ability to stimulate melanogenesis.

Methods: Human keratinocytes (N = 3) and melanocytes (N = 3) were isolated from skin samples of varying Fitzpatrick skin phototypes and irradiated with blue light (λpeak = 457 nm) and UVA light (λpeak = 385 nm). Cellular metabolic activity was assessed using the AlamarBlue HS assay, α-Melanocyte-Stimulating Hormone (α-MSH) production by keratinocytes was quantified using ELISA, and Western blotting was used to assess pro-melanogenic factor expression in melanocytes.

Results: High blue light intensity (50 mW/cm2, 50 J/cm2) and UVA light (15 mW/cm2, 20 J/cm2) significantly reduced cellular metabolic activity, with a 0.86 ± 0.055 and 0.60 ± 0.031 (mean ± SD) fold decrease compared to their respective sham by day 7. In contrast, moderate blue light intensities (5-15 mW/cm2, 10-20 J/cm2) preserved cellular metabolic activity while stimulating α-MSH production, with an optimal balance achieved at 10 mW/cm2, 15 J/cm2 (1.14 ± 0.046 fold increase relative to sham on day 7). Co-culture experiments confirmed that irradiated keratinocytes enhanced melanogenesis in melanocytes via paracrine signaling, increasing the expression of Tyrosinase and Dopachrome Tautomerase (DCT). Direct blue light irradiation on melanocytes also increased pigmentation without significant cellular damage.

Discussion: Moderate-intensity blue light at 10 mW/cm2, 15 J/cm2 effectively stimulates melanogenesis while maintaining cellular metabolic activity in both keratinocytes and melanocytes, offering a promising, safe approach for blue light therapies targeting pigmentation disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
5.00%
发文量
2608
审稿时长
14 weeks
期刊介绍: Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Effects of 6-week sprint interval training compared to traditional training on the running performance of distance runners: a randomized controlled trail. Work rate adjustments needed to maintain heart rate and RPE during high-intensity interval training in the heat. Editorial: Integrating machine learning with physics-based modeling of physiological systems. Effect of Cd-Zn compound contamination on the physiological response of broad bean and aphids. Effect of self-paced sprint interval training and low-volume HIIT on cardiorespiratory fitness: the role of heart rate and power output.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1