Functions of METTL1/WDR4 and QKI as m7G modification - related enzymes in digestive diseases.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Frontiers in Pharmacology Pub Date : 2025-01-09 eCollection Date: 2024-01-01 DOI:10.3389/fphar.2024.1491763
Wenyan Zhou, Yan Yi, Wenyu Cao, Xiaolin Zhong, Ling Chen
{"title":"Functions of METTL1/WDR4 and QKI as m7G modification - related enzymes in digestive diseases.","authors":"Wenyan Zhou, Yan Yi, Wenyu Cao, Xiaolin Zhong, Ling Chen","doi":"10.3389/fphar.2024.1491763","DOIUrl":null,"url":null,"abstract":"<p><p>N<sup>7</sup>-methylguanosine (m7G) modification is one of the most prevalent forms of chemical modification in RNA molecules, which plays an important role in biological processes such as RNA stability, translation regulation and ribosome recognition. Methyl-transferation of m7G modification is catalyzed by the enzyme complex of methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4), and Quaking (QKI) recognizes internal m7G methylated mRNA and regulates mRNA translation and stabilization. Recent studies have found that m7G modification - related enzymes are associated with the onset and progression of digestive cancer, such as colorectal cancer, liver cancer, and other digestive diseases such as ulcerative colitis. This review will focus on the latest research progress on the roles of m7G methyltransferase METTL1/WDR4 and recognized enzyme QKI in digestive diseases.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"15 ","pages":"1491763"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2024.1491763","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

N7-methylguanosine (m7G) modification is one of the most prevalent forms of chemical modification in RNA molecules, which plays an important role in biological processes such as RNA stability, translation regulation and ribosome recognition. Methyl-transferation of m7G modification is catalyzed by the enzyme complex of methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4), and Quaking (QKI) recognizes internal m7G methylated mRNA and regulates mRNA translation and stabilization. Recent studies have found that m7G modification - related enzymes are associated with the onset and progression of digestive cancer, such as colorectal cancer, liver cancer, and other digestive diseases such as ulcerative colitis. This review will focus on the latest research progress on the roles of m7G methyltransferase METTL1/WDR4 and recognized enzyme QKI in digestive diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Pharmacology
Frontiers in Pharmacology PHARMACOLOGY & PHARMACY-
CiteScore
7.80
自引率
8.90%
发文量
5163
审稿时长
14 weeks
期刊介绍: Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
CSNK1E is involved in TGF-β1 induced epithelial mesenchymal transformationas and related to melanoma immune heterogeneity. Danshen injection ameliorates unilateral ureteral obstruction-induced renal fibrosis by inhibiting ferroptosis via activating SIRT1/GPX4 pathway. Editorial: Model organisms in respiratory pharmacology 2023. Effect of ultrasound combined with microbubbles therapy on tumor hypoxic microenvironment. CD146 promotes resistance of NSCLC brain metastases to pemetrexed via the NF-κB signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1