Integrative bioinformatics approaches reveal key hub genes in cyanobacteria: insights from Synechocystis sp. PCC 6803 and Geminocystis sp. NIES-3708 under abiotic stress conditions.

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genes & genomics Pub Date : 2025-01-23 DOI:10.1007/s13258-025-01615-0
Abbas Karimi-Fard, Abbas Saidi, Masoud Tohidfar, Seyede N Emami
{"title":"Integrative bioinformatics approaches reveal key hub genes in cyanobacteria: insights from Synechocystis sp. PCC 6803 and Geminocystis sp. NIES-3708 under abiotic stress conditions.","authors":"Abbas Karimi-Fard, Abbas Saidi, Masoud Tohidfar, Seyede N Emami","doi":"10.1007/s13258-025-01615-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.</p><p><strong>Objective: </strong>To analyze the transcriptome data of Synechocystis sp. PCC 6803 under light, salinity, and iron stress conditions and to identify hub genes potentially involved in stress response, specifically comparing the findings with Geminocystis sp. NIES-3708.</p><p><strong>Methods: </strong>A comprehensive bioinformatics approach was applied, integrating meta-analysis, weighted gene co-expression network analysis (WGCNA), and a Random Forest (RF) machine learning algorithm. These approaches underscore the robustness of our findings, allowing for a more nuanced understanding of gene interactions and their functional relevance in stress responses. This methodology was used to identify key hub genes in Synechocystis sp. PCC 6803 that may have conserved roles in Geminocystis sp. NIES-3708. A total of four potential hub genes, including slr1392, slr1484, sll1549, and sll1863, were identified. Among these, only sll1549 had a homolog (GM3708_2556) with 71% sequence similarity and 70% query coverage in Geminocystis sp. NIES-3708. The expression of GM3708_2556 was further evaluated under nitrate, salt, and combined salinity-nitrate stress conditions using RT-qPCR.</p><p><strong>Results: </strong>Transcript levels of GM3708_2556 increased significantly under salt stress (3.35-fold, p-value < 0.05) and combined salinity-nitrate stress (2.24-fold, p-value < 0.05) compared to control conditions, while no significant change was observed under nitrate stress alone. These results suggest that GM3708_2556 may play a crucial role in the organism's response to salt stress, with potential interactions in nitrate metabolism.</p><p><strong>Conclusion: </strong>This study highlights the gene GM3708_2556 as a significant factor in salt stress response, with implications for conserved functional roles across cyanobacterial species. Furthermore, the findings have potential relevance to biotechnology, particularly in engineering stress-resistant cyanobacterial strains for applications in sustainable agriculture and bioenergy production.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-025-01615-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.

Objective: To analyze the transcriptome data of Synechocystis sp. PCC 6803 under light, salinity, and iron stress conditions and to identify hub genes potentially involved in stress response, specifically comparing the findings with Geminocystis sp. NIES-3708.

Methods: A comprehensive bioinformatics approach was applied, integrating meta-analysis, weighted gene co-expression network analysis (WGCNA), and a Random Forest (RF) machine learning algorithm. These approaches underscore the robustness of our findings, allowing for a more nuanced understanding of gene interactions and their functional relevance in stress responses. This methodology was used to identify key hub genes in Synechocystis sp. PCC 6803 that may have conserved roles in Geminocystis sp. NIES-3708. A total of four potential hub genes, including slr1392, slr1484, sll1549, and sll1863, were identified. Among these, only sll1549 had a homolog (GM3708_2556) with 71% sequence similarity and 70% query coverage in Geminocystis sp. NIES-3708. The expression of GM3708_2556 was further evaluated under nitrate, salt, and combined salinity-nitrate stress conditions using RT-qPCR.

Results: Transcript levels of GM3708_2556 increased significantly under salt stress (3.35-fold, p-value < 0.05) and combined salinity-nitrate stress (2.24-fold, p-value < 0.05) compared to control conditions, while no significant change was observed under nitrate stress alone. These results suggest that GM3708_2556 may play a crucial role in the organism's response to salt stress, with potential interactions in nitrate metabolism.

Conclusion: This study highlights the gene GM3708_2556 as a significant factor in salt stress response, with implications for conserved functional roles across cyanobacterial species. Furthermore, the findings have potential relevance to biotechnology, particularly in engineering stress-resistant cyanobacterial strains for applications in sustainable agriculture and bioenergy production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
期刊最新文献
miR-214-3p inhibits LPS-induced macrophage inflammation and attenuates the progression of dry eye syndrome by regulating ferroptosis in cells. Population genetics analysis based on mitochondrial cytochrome c oxidase subunit I (CO1) gene sequences of Cottus koreanus in South Korea. Potential role of ARG1 c.57G > A variant in Argininemia. A combination of upstream alleles involved in rice heading hastens natural long-day responses. Identification and expression analysis of the SPL gene family during flower bud differentiation in Rhododendron molle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1