Evaluation of the recovery effects of antibiotic-resistant Lactiplantibacillus plantarum subsp. plantarum ATCC14917 on the antibiotic-disturbed intestinal microbiota using a mice model.

IF 3.2 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Applied Microbiology Pub Date : 2025-02-03 DOI:10.1093/jambio/lxaf020
Yiwei Wang, Bini Wang, Zhenquan Huo, Fuxin Zhang, Yufang Liu
{"title":"Evaluation of the recovery effects of antibiotic-resistant Lactiplantibacillus plantarum subsp. plantarum ATCC14917 on the antibiotic-disturbed intestinal microbiota using a mice model.","authors":"Yiwei Wang, Bini Wang, Zhenquan Huo, Fuxin Zhang, Yufang Liu","doi":"10.1093/jambio/lxaf020","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Supplementing Lactobacillus alongside antibiotic treatment was a curative strategy to modulate gut microbiota and alleviate antibiotic-associated dysbiosis. But the lactobacilli that are used as probiotics are sensitive or have a low level of resistance to antibiotics, so they usually cannot achieve their beneficial effect, since they are killed by the applied antibiotics. This work aimed to develop the highly resistant Lactiplantibacillus plantarum subsp. plantarum ATCC14917 to cephalexin and evaluate its recovery effects of antibiotic-resistant L. plantarum on the antibiotic-disturbed intestinal microbiota using a mice model.</p><p><strong>Methods and results: </strong>After successive growth in lactic acid bacteria susceptibility medium broth containing a gradually increasing concentration of cephalexin for 70 days, the minimum inhibitory concentration (MIC) of L. plantarum ATCC14917 to cephalexin significantly increased from 16 to 8192 μg ml-1, but stabilized at 4096 μg ml-1. After sequencing and sequence analysis, no mutated genes were detected on mobile elements, showing that horizontal transfer of mutated genes could not occur. Compared to the control group (Con), feeding mice with cephalexin (1 mg ml-1; Cep) led to a decrease in alpha diversity. However, concurrently used cephalexin and L. plantarum (Cep + LpR) increased the alpha diversity in both microbial richness and diversity. The Cep + LpR group showed a lower distance with the Con group than either Cep or Cep + LpS groups, suggesting that resistant L. plantarum treatment was more effective than the original strain for the recovery of intestinal microbiota. Compared to the cephalexin-treated group, concurrent ingestion of cephalexin together with resistant L. plantarum significantly increased the proportion of beneficial bacteria and decreased Firmicutes/Bacteroidetes ratio and abundance of potential pathogens.</p><p><strong>Conclusions: </strong>The use of antibiotic-resistant L. plantarum ATCC14917 contributed to a much faster and richer recovery of the gut microbiota disturbed by antibiotic treatment compared to the original strain.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf020","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Supplementing Lactobacillus alongside antibiotic treatment was a curative strategy to modulate gut microbiota and alleviate antibiotic-associated dysbiosis. But the lactobacilli that are used as probiotics are sensitive or have a low level of resistance to antibiotics, so they usually cannot achieve their beneficial effect, since they are killed by the applied antibiotics. This work aimed to develop the highly resistant Lactiplantibacillus plantarum subsp. plantarum ATCC14917 to cephalexin and evaluate its recovery effects of antibiotic-resistant L. plantarum on the antibiotic-disturbed intestinal microbiota using a mice model.

Methods and results: After successive growth in lactic acid bacteria susceptibility medium broth containing a gradually increasing concentration of cephalexin for 70 days, the minimum inhibitory concentration (MIC) of L. plantarum ATCC14917 to cephalexin significantly increased from 16 to 8192 μg ml-1, but stabilized at 4096 μg ml-1. After sequencing and sequence analysis, no mutated genes were detected on mobile elements, showing that horizontal transfer of mutated genes could not occur. Compared to the control group (Con), feeding mice with cephalexin (1 mg ml-1; Cep) led to a decrease in alpha diversity. However, concurrently used cephalexin and L. plantarum (Cep + LpR) increased the alpha diversity in both microbial richness and diversity. The Cep + LpR group showed a lower distance with the Con group than either Cep or Cep + LpS groups, suggesting that resistant L. plantarum treatment was more effective than the original strain for the recovery of intestinal microbiota. Compared to the cephalexin-treated group, concurrent ingestion of cephalexin together with resistant L. plantarum significantly increased the proportion of beneficial bacteria and decreased Firmicutes/Bacteroidetes ratio and abundance of potential pathogens.

Conclusions: The use of antibiotic-resistant L. plantarum ATCC14917 contributed to a much faster and richer recovery of the gut microbiota disturbed by antibiotic treatment compared to the original strain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Microbiology
Journal of Applied Microbiology 生物-生物工程与应用微生物
CiteScore
7.30
自引率
2.50%
发文量
427
审稿时长
2.7 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
期刊最新文献
Betaproteobacterial clade II nosZ activated under high N2O concentrations in paddy soil microcosms. Biosynthesis of L-theanine via One-Step Purification and Immobilization Enzyme System. Beneficial bacteria improve seedling growth, nutrition and promote biological control of coffee diseases. Bentonite sterilization methods in relation to geological disposal of radioactive waste: Comparative efficiency of dry heat and gamma radiation. Characterization of Pseudomonas Phage MME: A Novel Tool for Combatting Multidrug-Resistant Pseudomonas aeruginosa and Disinfection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1