Integrative proteomic analysis reveals the potential diagnostic marker and drug target for the Type-2 diabetes mellitus.

IF 1.8 Q4 ENDOCRINOLOGY & METABOLISM Journal of Diabetes and Metabolic Disorders Pub Date : 2025-01-22 eCollection Date: 2025-06-01 DOI:10.1007/s40200-025-01562-3
Zhen Jia, Ning Jiang, Lin Lin, Bing Li, Xuewei Liang
{"title":"Integrative proteomic analysis reveals the potential diagnostic marker and drug target for the Type-2 diabetes mellitus.","authors":"Zhen Jia, Ning Jiang, Lin Lin, Bing Li, Xuewei Liang","doi":"10.1007/s40200-025-01562-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The escalating prevalence of Type-2 diabetes mellitus (T2DM) poses a significant global health challenge. Utilizing integrative proteomic analysis, this study aimed to identify a panel of potential protein markers for T2DM, enhancing diagnostic accuracy and paving the way for personalized treatment strategies.</p><p><strong>Methods: </strong>Proteome profiles from two independent cohorts were integrated: cohort 1 composed of 10 T2DM patients and 10 healthy controls (HC), and cohort 2 comprising 87 T2DM patients and 60 healthy controls. Differential expression analysis, functional enrichment analysis, receiver operating characteristic (ROC) analysis, and classification error matrix analysis were employed.</p><p><strong>Results: </strong>Comparative proteomic analysis identified the differential expressed proteins (DEPs) and changes in biological pathways associated with T2DM. Further combined analysis refined a group of protein panel (including CA1, S100A6, and DDT), which were significantly increased in T2DM in both two cohorts. ROC analysis revealed the area under curve (AUC) values of 0.94 for CA1, 0.87 for S100A6, and 0.97 for DDT; the combined model achieved an AUC reaching 1. Classification error matrix analysis demonstrated the combined model could reach an accuracy of 1 and 0.875 in the 60% training set and 40% testing set.</p><p><strong>Conclusions: </strong>This study incorporates different cohorts of T2DM, and refines the potential markers for T2DM with high accuracy, offering more reliable markers for clinical translation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40200-025-01562-3.</p>","PeriodicalId":15635,"journal":{"name":"Journal of Diabetes and Metabolic Disorders","volume":"24 1","pages":"55"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes and Metabolic Disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40200-025-01562-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The escalating prevalence of Type-2 diabetes mellitus (T2DM) poses a significant global health challenge. Utilizing integrative proteomic analysis, this study aimed to identify a panel of potential protein markers for T2DM, enhancing diagnostic accuracy and paving the way for personalized treatment strategies.

Methods: Proteome profiles from two independent cohorts were integrated: cohort 1 composed of 10 T2DM patients and 10 healthy controls (HC), and cohort 2 comprising 87 T2DM patients and 60 healthy controls. Differential expression analysis, functional enrichment analysis, receiver operating characteristic (ROC) analysis, and classification error matrix analysis were employed.

Results: Comparative proteomic analysis identified the differential expressed proteins (DEPs) and changes in biological pathways associated with T2DM. Further combined analysis refined a group of protein panel (including CA1, S100A6, and DDT), which were significantly increased in T2DM in both two cohorts. ROC analysis revealed the area under curve (AUC) values of 0.94 for CA1, 0.87 for S100A6, and 0.97 for DDT; the combined model achieved an AUC reaching 1. Classification error matrix analysis demonstrated the combined model could reach an accuracy of 1 and 0.875 in the 60% training set and 40% testing set.

Conclusions: This study incorporates different cohorts of T2DM, and refines the potential markers for T2DM with high accuracy, offering more reliable markers for clinical translation.

Supplementary information: The online version contains supplementary material available at 10.1007/s40200-025-01562-3.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Diabetes and Metabolic Disorders
Journal of Diabetes and Metabolic Disorders Medicine-Internal Medicine
CiteScore
4.80
自引率
3.60%
发文量
210
期刊介绍: Journal of Diabetes & Metabolic Disorders is a peer reviewed journal which publishes original clinical and translational articles and reviews in the field of endocrinology and provides a forum of debate of the highest quality on these issues. Topics of interest include, but are not limited to, diabetes, lipid disorders, metabolic disorders, osteoporosis, interdisciplinary practices in endocrinology, cardiovascular and metabolic risk, aging research, obesity, traditional medicine, pychosomatic research, behavioral medicine, ethics and evidence-based practices.As of Jan 2018 the journal is published by Springer as a hybrid journal with no article processing charges. All articles published before 2018 are available free of charge on springerlink.Unofficial 2017 2-year Impact Factor: 1.816.
期刊最新文献
Assessment of gut microbiota in the elderly with sarcopenic obesity: a case-control study. Associations between adherence to plant-based diets and osteoporosis and visceral fat area in middle-aged adults: evidence of a large population-based study. Cardiovascular risk patterns through AI-enhanced clustering of longitudinal health data. Phase angle as an independent predictor of sarcopenia and glycemic control in older adults with type 2 diabetes: a cross-sectional observational study. Interaction between 3-SNP genetic risk score and dietary fats intake on inflammatory markers among overweight and obese women.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1