Genetic and pharmacological targeting of HINT2 promotes OXPHOS to alleviate inflammatory responses and cell necrosis in acute pancreatitis

IF 9.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmacological research Pub Date : 2025-02-01 DOI:10.1016/j.phrs.2025.107620
Jiaqi Yao , Yuhong Jiang , Pengcheng Zhang , Yifan Miao , Xiajia Wu , Hang Lei , Zhijun Xie , Yong Tian , Xianlin Zhao , Juan Li , Lv Zhu , Meihua Wan , Wenfu Tang
{"title":"Genetic and pharmacological targeting of HINT2 promotes OXPHOS to alleviate inflammatory responses and cell necrosis in acute pancreatitis","authors":"Jiaqi Yao ,&nbsp;Yuhong Jiang ,&nbsp;Pengcheng Zhang ,&nbsp;Yifan Miao ,&nbsp;Xiajia Wu ,&nbsp;Hang Lei ,&nbsp;Zhijun Xie ,&nbsp;Yong Tian ,&nbsp;Xianlin Zhao ,&nbsp;Juan Li ,&nbsp;Lv Zhu ,&nbsp;Meihua Wan ,&nbsp;Wenfu Tang","doi":"10.1016/j.phrs.2025.107620","DOIUrl":null,"url":null,"abstract":"<div><div>The necrosis of pancreatic acinar cells is a key molecular event in the progression of acute pancreatitis (AP), with disturbances in mitochondrial energy metabolism considered to be a direct causative factor of acinar cell necrosis. Histidine triad nucleotide-binding protein 2 (HINT2) has been implicated in the development of various diseases, whereas its involvement in the progression of AP remains unclear. This study aims to investigate the role of HINT2 in AP. HINT2 expression in pancreatic tissues was significantly downregulated after AP. The results of glutathione-S-transferase (GST) pull-down and proteomics analyses revealed the involvement of HINT2 in regulating mitochondrial oxidative phosphorylation (OXPHOS) in AP mice. Moreover, lentivirus-mediated HINT2 overexpression not only alleviated AP-induced ATP depletion, but also relieved inflammatory responses and cell necrosis. Mechanistically, HINT2 interacted with cytochrome C oxidase II (MTCO2) to promote mitochondrial OXPHOS, thereby reducing ROS accumulation and inhibiting the activation of inflammatory signaling pathway. Besides, HINT2 act as a direct pharmacological target of Emo to elicit protective effects on AP. Importantly, Emo upregulates the expression of HINT2 and OXPHOS complex proteins and enhances the interaction between HINT2 and MTCO2. Furthermore, CRISPR/Cas9-mediated HINT2 knockout significantly impaired the protective effects of Emo against AP-induced mitochondrial energy metabolism disorders, inflammatory responses, and acinar cell necrosis<em>.</em> Overall, these results uncover a previously unexplored role for HINT2 in maintaining mitochondrial energy metabolism in pancreatic acinar cells and reveals novel mechanism and target for Emo-mediated AP remission.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"212 ","pages":"Article 107620"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661825000453","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The necrosis of pancreatic acinar cells is a key molecular event in the progression of acute pancreatitis (AP), with disturbances in mitochondrial energy metabolism considered to be a direct causative factor of acinar cell necrosis. Histidine triad nucleotide-binding protein 2 (HINT2) has been implicated in the development of various diseases, whereas its involvement in the progression of AP remains unclear. This study aims to investigate the role of HINT2 in AP. HINT2 expression in pancreatic tissues was significantly downregulated after AP. The results of glutathione-S-transferase (GST) pull-down and proteomics analyses revealed the involvement of HINT2 in regulating mitochondrial oxidative phosphorylation (OXPHOS) in AP mice. Moreover, lentivirus-mediated HINT2 overexpression not only alleviated AP-induced ATP depletion, but also relieved inflammatory responses and cell necrosis. Mechanistically, HINT2 interacted with cytochrome C oxidase II (MTCO2) to promote mitochondrial OXPHOS, thereby reducing ROS accumulation and inhibiting the activation of inflammatory signaling pathway. Besides, HINT2 act as a direct pharmacological target of Emo to elicit protective effects on AP. Importantly, Emo upregulates the expression of HINT2 and OXPHOS complex proteins and enhances the interaction between HINT2 and MTCO2. Furthermore, CRISPR/Cas9-mediated HINT2 knockout significantly impaired the protective effects of Emo against AP-induced mitochondrial energy metabolism disorders, inflammatory responses, and acinar cell necrosis. Overall, these results uncover a previously unexplored role for HINT2 in maintaining mitochondrial energy metabolism in pancreatic acinar cells and reveals novel mechanism and target for Emo-mediated AP remission.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
Hoechst 33342/PI double-staining kit
来源期刊
Pharmacological research
Pharmacological research 医学-药学
CiteScore
18.70
自引率
3.20%
发文量
491
审稿时长
8 days
期刊介绍: Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.
期刊最新文献
An in vitro pharmacogenomic approach reveals subtype-specific therapeutic vulnerabilities in atypical teratoid/rhabdoid tumors (AT/RT). Lactobacillus vaginalis alleviates DSS induced colitis by regulating the gut microbiota and increasing the production of 3-indoleacrylic acid. Gut microbiome-derived indole-3-carboxaldehyde regulates stress vulnerability in chronic restraint stress by activating aryl hydrocarbon receptors Quality and composition control of complex TCM preparations through a novel “Herbs-in vivo Compounds-Targets-Pathways” network methodology: The case of Lianhuaqingwen capsules Neuronal PCSK9 regulates cognitive performances via the modulation of ApoER2 synaptic localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1