Bioinformatic identification of important roles of COL1A1 and TNFRSF12A in cartilage injury and osteoporosis.

IF 4.5 2区 医学 Q1 NUTRITION & DIETETICS Journal of the International Society of Sports Nutrition Pub Date : 2025-12-01 Epub Date: 2025-01-23 DOI:10.1080/15502783.2025.2454641
Muzi Liu, Shiguo Gong, Xin Sheng, Zihong Zhang, Xichun Wang
{"title":"Bioinformatic identification of important roles of COL1A1 and TNFRSF12A in cartilage injury and osteoporosis.","authors":"Muzi Liu, Shiguo Gong, Xin Sheng, Zihong Zhang, Xichun Wang","doi":"10.1080/15502783.2025.2454641","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to identify the key regulatory mechanisms of cartilage injury and osteoporosis through bioinformatics methods, and to provide a new theoretical basis and molecular targets for the diagnosis and treatment of the disease.</p><p><strong>Methods: </strong>Microarray data for cartilage injury (GSE129147) and osteoporosis (GSE230665) were first downloaded from the GEO database. Differential expression analysis was applied to identify genes that were significantly up-or down-regulated in the cartilage injury and osteoporosis samples. These genes were subjected to GO enrichment analysis and KEGG pathway analysis. In addition, we employed SVA and RRA methods to merge the two sets of data, eliminating batch effects and enhancing the statistical power of the analysis. Through WGCNA, we identified gene modules that were closely associated with disease phenotypes and then screened for key genes that intersected with differentially expressed genes. The diagnostic value of these genes as potential biomarkers was evaluated by ROC analysis. Moreover, we performed an immune infiltration analysis to explore the correlation between these core genes and immune cell infiltration.</p><p><strong>Results: </strong>We performed GO enrichment analysis and KEGG pathway analysis of genes significantly up-or down-regulated in cartilage injury and osteoporosis samples. Important biological processes, cellular components and molecular functions, and key metabolic or signaling pathways associated with osteoporosis and cartilage injury were identified. Through WGCNA, we identified gene modules that were closely associated with the disease phenotype, from which we then screened for key genes that intersected with differentially expressed genes. Ultimately, we focused on two identified core genes, COL1A1 and TNFRSF12A, and assessed the diagnostic value of these genes as potential biomarkers by ROC analysis. Meanwhile, GSVA provided an in-depth view of the role of these genes in disease-specific biological pathways. Immune infiltration analysis further revealed the possible key role of COL1A1 and TNFRSF12A in regulating immune cell infiltration in osteoporosis and cartilage injury.</p><p><strong>Conclusion: </strong>COL1A1 and TNFRSF12A as key regulatory molecules in osteoporosis and cartilage injury.</p>","PeriodicalId":17400,"journal":{"name":"Journal of the International Society of Sports Nutrition","volume":"22 1","pages":"2454641"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Society of Sports Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15502783.2025.2454641","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The aim of this study was to identify the key regulatory mechanisms of cartilage injury and osteoporosis through bioinformatics methods, and to provide a new theoretical basis and molecular targets for the diagnosis and treatment of the disease.

Methods: Microarray data for cartilage injury (GSE129147) and osteoporosis (GSE230665) were first downloaded from the GEO database. Differential expression analysis was applied to identify genes that were significantly up-or down-regulated in the cartilage injury and osteoporosis samples. These genes were subjected to GO enrichment analysis and KEGG pathway analysis. In addition, we employed SVA and RRA methods to merge the two sets of data, eliminating batch effects and enhancing the statistical power of the analysis. Through WGCNA, we identified gene modules that were closely associated with disease phenotypes and then screened for key genes that intersected with differentially expressed genes. The diagnostic value of these genes as potential biomarkers was evaluated by ROC analysis. Moreover, we performed an immune infiltration analysis to explore the correlation between these core genes and immune cell infiltration.

Results: We performed GO enrichment analysis and KEGG pathway analysis of genes significantly up-or down-regulated in cartilage injury and osteoporosis samples. Important biological processes, cellular components and molecular functions, and key metabolic or signaling pathways associated with osteoporosis and cartilage injury were identified. Through WGCNA, we identified gene modules that were closely associated with the disease phenotype, from which we then screened for key genes that intersected with differentially expressed genes. Ultimately, we focused on two identified core genes, COL1A1 and TNFRSF12A, and assessed the diagnostic value of these genes as potential biomarkers by ROC analysis. Meanwhile, GSVA provided an in-depth view of the role of these genes in disease-specific biological pathways. Immune infiltration analysis further revealed the possible key role of COL1A1 and TNFRSF12A in regulating immune cell infiltration in osteoporosis and cartilage injury.

Conclusion: COL1A1 and TNFRSF12A as key regulatory molecules in osteoporosis and cartilage injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the International Society of Sports Nutrition
Journal of the International Society of Sports Nutrition NUTRITION & DIETETICS-SPORT SCIENCES
CiteScore
8.80
自引率
3.90%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Journal of the International Society of Sports Nutrition (JISSN) focuses on the acute and chronic effects of sports nutrition and supplementation strategies on body composition, physical performance and metabolism. JISSN is aimed at researchers and sport enthusiasts focused on delivering knowledge on exercise and nutrition on health, disease, rehabilitation, training, and performance. The journal provides a platform on which readers can determine nutritional strategies that may enhance exercise and/or training adaptations leading to improved health and performance.
期刊最新文献
Caffeine supplementation improved movement patterns and reactive agility in rugby sevens matches in male collegiate players. Changes in taste and odor sensitivities during repeated bicycle ergometer exercises. Association between salivary /microbiological parameters, oral health and eating habits in young athletes. International society of sports nutrition position stand: β-hydroxy-β-methylbutyrate (HMB). Association between caffeine intake and fat free mass index: a retrospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1