Directed evolution of diacylglycerol acyltransferases 2 promotes lipids and triglyceride accumulation.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2025-01-23 DOI:10.1007/s11103-025-01552-2
Tinghui Feng, Qiang Zhang, Tong Gao, Jiacong Gao, Jiahao Fang, Xiaodan Zhang, Juane Dong, Zongsuo Liang
{"title":"Directed evolution of diacylglycerol acyltransferases 2 promotes lipids and triglyceride accumulation.","authors":"Tinghui Feng, Qiang Zhang, Tong Gao, Jiacong Gao, Jiahao Fang, Xiaodan Zhang, Juane Dong, Zongsuo Liang","doi":"10.1007/s11103-025-01552-2","DOIUrl":null,"url":null,"abstract":"<p><p>Triacylglycerol (TAG) is a major component of plant-neutral lipids. Diacylglycerol acyltransferase 2 (DGAT2) plays an important role in plant oil accumulation by catalyzing the final step of the Kennedy pathway. In this study, ten DGAT2 sequences were originating from different oil crops into the TAG-deficient yeast strain H1246, to compare their enzyme activity of oil synthesis and filter out potential amino acid residue sites for directed evolution. Based on the synthesis efficiency of total lipids, TAGs, and the topology models of these DGAT2s, five possible amino acid sites were identified that may affect the synthesis of total lipids and TAGs. In the H1246 yeast expression system, HaDGAT2 significantly increased the total oil and TAG content; however, ClDGAT2 was weak in synthesizing both oil and TAG. Thus, building on HaDGAT2 and ClDGAT2, these amino acid substitutions were created by point-to-point mutating and substantially affected the oil or TAG synthesis ability of DGAT2s. Among the five amino acid substitutions, mutations at residue (3) successfully make HaDGAT2 less capable of synthesizing lipids and TAG, and ClDGAT2 more capable of synthesizing total lipids and TAG. Except mutations at residue (2), all residue mutations contributed to a weaker ability of fatty acid synthesis. In addition, ten mutant DGAT2s and two parental DGAT2s were overexpressed in tobacco leaves to reveal their lipid synthesis function. This approach helped us to authenticate the significance of these loci. In varying degrees, those mutations enhanced the ability of ClDGAT2 to synthesize lipids, attenuated the ability of HaDGAT2 to synthesize lipids, and altered preference for fatty acids in tobacco.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"28"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01552-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triacylglycerol (TAG) is a major component of plant-neutral lipids. Diacylglycerol acyltransferase 2 (DGAT2) plays an important role in plant oil accumulation by catalyzing the final step of the Kennedy pathway. In this study, ten DGAT2 sequences were originating from different oil crops into the TAG-deficient yeast strain H1246, to compare their enzyme activity of oil synthesis and filter out potential amino acid residue sites for directed evolution. Based on the synthesis efficiency of total lipids, TAGs, and the topology models of these DGAT2s, five possible amino acid sites were identified that may affect the synthesis of total lipids and TAGs. In the H1246 yeast expression system, HaDGAT2 significantly increased the total oil and TAG content; however, ClDGAT2 was weak in synthesizing both oil and TAG. Thus, building on HaDGAT2 and ClDGAT2, these amino acid substitutions were created by point-to-point mutating and substantially affected the oil or TAG synthesis ability of DGAT2s. Among the five amino acid substitutions, mutations at residue (3) successfully make HaDGAT2 less capable of synthesizing lipids and TAG, and ClDGAT2 more capable of synthesizing total lipids and TAG. Except mutations at residue (2), all residue mutations contributed to a weaker ability of fatty acid synthesis. In addition, ten mutant DGAT2s and two parental DGAT2s were overexpressed in tobacco leaves to reveal their lipid synthesis function. This approach helped us to authenticate the significance of these loci. In varying degrees, those mutations enhanced the ability of ClDGAT2 to synthesize lipids, attenuated the ability of HaDGAT2 to synthesize lipids, and altered preference for fatty acids in tobacco.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
The Arabidopsis F-box protein FBS associated with the helix-loop-helix transcription factor FAMA involved in stomatal immunity. Chemical application improves stress resilience in plants. Chemically-induced cellular stress signals are transmitted to alternative splicing via UsnRNA levels to alter gene expression in Arabidopsis thaliana. A glycogen synthase kinase-3 gene enhances grain yield heterosis in semi-dwarf rapeseed. Light regulates seed dormancy through FHY3-mediated activation of ACC OXIDASE 1 in Arabidopsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1