{"title":"Astragaloside IV inhibits retinal pigment epithelial cell senescence and reduces IL-1β mRNA stability by targeting FTO-mediated m<sup>6</sup>A methylation.","authors":"Si-Wei Wang, Ping Li, Shi-Yu Liu, De-Lian Huang, Si-Jia Zhang, Xi-Xi Zeng, Tian Lan, Kai-Li Mao, Yuan Gao, Yi-Fan Cheng, Qing Shen, Ye-Ping Ruan, Zhu-Jun Mao","doi":"10.1016/j.phymed.2025.156408","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.</p><p><strong>Purpose: </strong>This study aimed to explore the impacts of Ast on RPE cell senescence and to uncover the molecular mechanisms involved.</p><p><strong>Methods: </strong>The therapeutic efficacy of Ast was assessed using sodium iodate (NaIO<sub>3</sub>)-induced adult retinal pigment epithelial cell line 19 (ARPE-19) cell models and an AMD mouse model. To investigate the mechanisms by which Ast mitigated RPE cell senescence, RNA sequencing (RNA-seq), drug affinity responsive target stability-mass spectrometry (DARTS-MS), cellular thermal shift assay (CETSA), reverse transcription quantitative PCR (RT-qPCR), as well as western blotting were conducted.</p><p><strong>Results: </strong>Ast significantly inhibited NaIO<sub>3</sub>-treated ARPE-19 cell senescence and protected against NaIO<sub>3</sub>-induced AMD in mice. RNA-seq analysis revealed that Ast significantly attenuated inflammation-related signaling pathways and reduced the mRNA levels of interleukin-1 beta (IL-1β). Specifically, Ast decreased the stability of IL-1β mRNA while enhancing its N6-methyladenosine (m<sup>6</sup>A) methylation. Furthermore, Ast directly interacted with fat mass and obesity-associated protein (FTO). Knockdown or pharmacological inhibition of FTO mitigated the senescence and IL-1β expression in NaIO<sub>3</sub>-treated ARPE-19 cells. FTO was essential for Ast to inhibit cellular senescence and IL-1β expression. Additionally, inhibition or knockdown of FTO conferred also provided resistance to AMD in the murine model.</p><p><strong>Conclusion: </strong>Our results indicated that Ast significantly attenuated RPE cell senescence and showed anti-AMD properties. FTO was demonstrated to be a promising therapeutic target for AMD treatment. These findings may provide a deeper understanding of the molecular mechanisms underlying RPE cell senescence in AMD and offer potential strategies for its prevention and management.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"138 ","pages":"156408"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2025.156408","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.
Purpose: This study aimed to explore the impacts of Ast on RPE cell senescence and to uncover the molecular mechanisms involved.
Methods: The therapeutic efficacy of Ast was assessed using sodium iodate (NaIO3)-induced adult retinal pigment epithelial cell line 19 (ARPE-19) cell models and an AMD mouse model. To investigate the mechanisms by which Ast mitigated RPE cell senescence, RNA sequencing (RNA-seq), drug affinity responsive target stability-mass spectrometry (DARTS-MS), cellular thermal shift assay (CETSA), reverse transcription quantitative PCR (RT-qPCR), as well as western blotting were conducted.
Results: Ast significantly inhibited NaIO3-treated ARPE-19 cell senescence and protected against NaIO3-induced AMD in mice. RNA-seq analysis revealed that Ast significantly attenuated inflammation-related signaling pathways and reduced the mRNA levels of interleukin-1 beta (IL-1β). Specifically, Ast decreased the stability of IL-1β mRNA while enhancing its N6-methyladenosine (m6A) methylation. Furthermore, Ast directly interacted with fat mass and obesity-associated protein (FTO). Knockdown or pharmacological inhibition of FTO mitigated the senescence and IL-1β expression in NaIO3-treated ARPE-19 cells. FTO was essential for Ast to inhibit cellular senescence and IL-1β expression. Additionally, inhibition or knockdown of FTO conferred also provided resistance to AMD in the murine model.
Conclusion: Our results indicated that Ast significantly attenuated RPE cell senescence and showed anti-AMD properties. FTO was demonstrated to be a promising therapeutic target for AMD treatment. These findings may provide a deeper understanding of the molecular mechanisms underlying RPE cell senescence in AMD and offer potential strategies for its prevention and management.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.