Astragaloside IV inhibits retinal pigment epithelial cell senescence and reduces IL-1β mRNA stability by targeting FTO-mediated m6A methylation.

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL Phytomedicine Pub Date : 2025-01-18 DOI:10.1016/j.phymed.2025.156408
Si-Wei Wang, Ping Li, Shi-Yu Liu, De-Lian Huang, Si-Jia Zhang, Xi-Xi Zeng, Tian Lan, Kai-Li Mao, Yuan Gao, Yi-Fan Cheng, Qing Shen, Ye-Ping Ruan, Zhu-Jun Mao
{"title":"Astragaloside IV inhibits retinal pigment epithelial cell senescence and reduces IL-1β mRNA stability by targeting FTO-mediated m<sup>6</sup>A methylation.","authors":"Si-Wei Wang, Ping Li, Shi-Yu Liu, De-Lian Huang, Si-Jia Zhang, Xi-Xi Zeng, Tian Lan, Kai-Li Mao, Yuan Gao, Yi-Fan Cheng, Qing Shen, Ye-Ping Ruan, Zhu-Jun Mao","doi":"10.1016/j.phymed.2025.156408","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.</p><p><strong>Purpose: </strong>This study aimed to explore the impacts of Ast on RPE cell senescence and to uncover the molecular mechanisms involved.</p><p><strong>Methods: </strong>The therapeutic efficacy of Ast was assessed using sodium iodate (NaIO<sub>3</sub>)-induced adult retinal pigment epithelial cell line 19 (ARPE-19) cell models and an AMD mouse model. To investigate the mechanisms by which Ast mitigated RPE cell senescence, RNA sequencing (RNA-seq), drug affinity responsive target stability-mass spectrometry (DARTS-MS), cellular thermal shift assay (CETSA), reverse transcription quantitative PCR (RT-qPCR), as well as western blotting were conducted.</p><p><strong>Results: </strong>Ast significantly inhibited NaIO<sub>3</sub>-treated ARPE-19 cell senescence and protected against NaIO<sub>3</sub>-induced AMD in mice. RNA-seq analysis revealed that Ast significantly attenuated inflammation-related signaling pathways and reduced the mRNA levels of interleukin-1 beta (IL-1β). Specifically, Ast decreased the stability of IL-1β mRNA while enhancing its N6-methyladenosine (m<sup>6</sup>A) methylation. Furthermore, Ast directly interacted with fat mass and obesity-associated protein (FTO). Knockdown or pharmacological inhibition of FTO mitigated the senescence and IL-1β expression in NaIO<sub>3</sub>-treated ARPE-19 cells. FTO was essential for Ast to inhibit cellular senescence and IL-1β expression. Additionally, inhibition or knockdown of FTO conferred also provided resistance to AMD in the murine model.</p><p><strong>Conclusion: </strong>Our results indicated that Ast significantly attenuated RPE cell senescence and showed anti-AMD properties. FTO was demonstrated to be a promising therapeutic target for AMD treatment. These findings may provide a deeper understanding of the molecular mechanisms underlying RPE cell senescence in AMD and offer potential strategies for its prevention and management.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"138 ","pages":"156408"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2025.156408","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.

Purpose: This study aimed to explore the impacts of Ast on RPE cell senescence and to uncover the molecular mechanisms involved.

Methods: The therapeutic efficacy of Ast was assessed using sodium iodate (NaIO3)-induced adult retinal pigment epithelial cell line 19 (ARPE-19) cell models and an AMD mouse model. To investigate the mechanisms by which Ast mitigated RPE cell senescence, RNA sequencing (RNA-seq), drug affinity responsive target stability-mass spectrometry (DARTS-MS), cellular thermal shift assay (CETSA), reverse transcription quantitative PCR (RT-qPCR), as well as western blotting were conducted.

Results: Ast significantly inhibited NaIO3-treated ARPE-19 cell senescence and protected against NaIO3-induced AMD in mice. RNA-seq analysis revealed that Ast significantly attenuated inflammation-related signaling pathways and reduced the mRNA levels of interleukin-1 beta (IL-1β). Specifically, Ast decreased the stability of IL-1β mRNA while enhancing its N6-methyladenosine (m6A) methylation. Furthermore, Ast directly interacted with fat mass and obesity-associated protein (FTO). Knockdown or pharmacological inhibition of FTO mitigated the senescence and IL-1β expression in NaIO3-treated ARPE-19 cells. FTO was essential for Ast to inhibit cellular senescence and IL-1β expression. Additionally, inhibition or knockdown of FTO conferred also provided resistance to AMD in the murine model.

Conclusion: Our results indicated that Ast significantly attenuated RPE cell senescence and showed anti-AMD properties. FTO was demonstrated to be a promising therapeutic target for AMD treatment. These findings may provide a deeper understanding of the molecular mechanisms underlying RPE cell senescence in AMD and offer potential strategies for its prevention and management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
期刊最新文献
GelMA@APPA microspheres promote chondrocyte regeneration and alleviate osteoarthritis via Fgfr2 activation. Intervention effects of Er Miao san on metabolic syndrome in Bama miniature pigs. Shenghui decoction inhibits neuronal cell apoptosis to improve Alzheimer's disease through the PDE4B/cAMP/CREB signaling pathway. Synergistic antimicrobial efficacy of glabrol and colistin through micelle-based co-delivery against multidrug-resistant bacterial pathogens. 4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1