Protecting digital assets using an ontology based cyber situational awareness system.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2025-01-09 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1394363
Tariq Ammar Almoabady, Yasser Mohammad Alblawi, Ahmad Emad Albalawi, Majed M Aborokbah, S Manimurugan, Ahmed Aljuhani, Hussain Aldawood, P Karthikeyan
{"title":"Protecting digital assets using an ontology based cyber situational awareness system.","authors":"Tariq Ammar Almoabady, Yasser Mohammad Alblawi, Ahmad Emad Albalawi, Majed M Aborokbah, S Manimurugan, Ahmed Aljuhani, Hussain Aldawood, P Karthikeyan","doi":"10.3389/frai.2024.1394363","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cyber situational awareness is critical for detecting and mitigating cybersecurity threats in real-time. This study introduces a comprehensive methodology that integrates the Isolation Forest and autoencoder algorithms, Structured Threat Information Expression (STIX) implementation, and ontology development to enhance cybersecurity threat detection and intelligence. The Isolation Forest algorithm excels in anomaly detection in high-dimensional datasets, while autoencoders provide nonlinear detection capabilities and adaptive feature learning. Together, they form a robust framework for proactive anomaly detection.</p><p><strong>Methods: </strong>The proposed methodology leverages the Isolation Forest for efficient anomaly identification and autoencoders for feature learning and nonlinear anomaly detection. Threat information was standardized using the STIX framework, facilitating structured and dynamic assessment of threat intelligence. Ontology development was employed to represent knowledge systematically and enable semantic correlation of threats. Feature mapping enriched datasets with contextual threat information.</p><p><strong>Results: </strong>The proposed dual-algorithm framework demonstrated superior performance, achieving 95% accuracy, a 99% F1 score, and a 94.60% recall rate. These results outperformed the benchmarks, highlighting the model's effectiveness in proactive anomaly detection and cyber situational awareness enhancement.</p><p><strong>Discussion: </strong>The integration of STIX and ontology development within the proposed methodology significantly enhanced threat information standardization and semantic analysis. The dual-algorithm approach provided improved detection capabilities compared to traditional methods, underscoring its potential for scalable and effective cybersecurity applications. Future research could explore further optimization and real-world deployments to refine and validate the approach.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1394363"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1394363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Cyber situational awareness is critical for detecting and mitigating cybersecurity threats in real-time. This study introduces a comprehensive methodology that integrates the Isolation Forest and autoencoder algorithms, Structured Threat Information Expression (STIX) implementation, and ontology development to enhance cybersecurity threat detection and intelligence. The Isolation Forest algorithm excels in anomaly detection in high-dimensional datasets, while autoencoders provide nonlinear detection capabilities and adaptive feature learning. Together, they form a robust framework for proactive anomaly detection.

Methods: The proposed methodology leverages the Isolation Forest for efficient anomaly identification and autoencoders for feature learning and nonlinear anomaly detection. Threat information was standardized using the STIX framework, facilitating structured and dynamic assessment of threat intelligence. Ontology development was employed to represent knowledge systematically and enable semantic correlation of threats. Feature mapping enriched datasets with contextual threat information.

Results: The proposed dual-algorithm framework demonstrated superior performance, achieving 95% accuracy, a 99% F1 score, and a 94.60% recall rate. These results outperformed the benchmarks, highlighting the model's effectiveness in proactive anomaly detection and cyber situational awareness enhancement.

Discussion: The integration of STIX and ontology development within the proposed methodology significantly enhanced threat information standardization and semantic analysis. The dual-algorithm approach provided improved detection capabilities compared to traditional methods, underscoring its potential for scalable and effective cybersecurity applications. Future research could explore further optimization and real-world deployments to refine and validate the approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Evaluating the effectiveness of prompt engineering for knowledge graph question answering. The sociolinguistic foundations of language modeling. Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron. Dynamic-budget superpixel active learning for semantic segmentation. Protecting digital assets using an ontology based cyber situational awareness system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1