Schizosaccharomyces pombe pus1 mutants are temperature sensitive due to decay of tRNAIle(UAU) by the 5'-3' exonuclease Dhp1, primarily targeting the unspliced pre-tRNA.

IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RNA Pub Date : 2025-01-23 DOI:10.1261/rna.080315.124
Franziska Stegemann, Erin Marcus, Savanah Neupert, Sarah Ostrowski, David H Mathews, Eric M Phizicky
{"title":"Schizosaccharomyces pombe pus1 mutants are temperature sensitive due to decay of tRNAIle(UAU) by the 5'-3' exonuclease Dhp1, primarily targeting the unspliced pre-tRNA.","authors":"Franziska Stegemann, Erin Marcus, Savanah Neupert, Sarah Ostrowski, David H Mathews, Eric M Phizicky","doi":"10.1261/rna.080315.124","DOIUrl":null,"url":null,"abstract":"<p><p>The pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect. We show that tRNAIle(UAU) is degraded by the 5'-3' exonuclease Dhp1 (ortholog of Saccharomyces cerevisiae Rat1), as each of four spontaneous pus1Δ suppressors had dhp1 mutations and restored tRNAIle(UAU) levels, and two suppressors that also restored tRNAIle(UAU) levels had mutations in tol1 (S. cerevisiae MET22 ortholog), predicted to inhibit Dhp1. We show that Pus1 modifies U27, U34, and U36 of tRNAIle(UAU), raising the question about how these modifications prevent decay. Our results suggests that Dhp1 targets unspliced pre-tRNAIle(UAU), as a pus1Δ strain in which the only copy of tRNAIle(UAU) has no intron (tI(UAU)-iΔ) is temperature resistant and undergoes no detectable decay, and the corresponding pus1Δ tI(UAU)-WT strain accumulates unspliced pre-tRNAIle(UAU). Moreover, the predicted exon-intron structure of pre-tRNAIle(UAU) differs from the canonical bulge-helix-loop structure compatible with tRNA splicing, and a pus1Δ tI(UAU)i-var strain with intron mutations predicted to improve exon-intron structure is temperature resistant and undergoes little decay. These results suggest that decay of tRNAIle(UAU) by Dhp1 in pus1Δ strains occurs at the level of unspliced pre-tRNAIle(UAU), implying a substantial role for one or more of the Ψ residues in stabilizing the pre-tRNA structure for splicing.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080315.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect. We show that tRNAIle(UAU) is degraded by the 5'-3' exonuclease Dhp1 (ortholog of Saccharomyces cerevisiae Rat1), as each of four spontaneous pus1Δ suppressors had dhp1 mutations and restored tRNAIle(UAU) levels, and two suppressors that also restored tRNAIle(UAU) levels had mutations in tol1 (S. cerevisiae MET22 ortholog), predicted to inhibit Dhp1. We show that Pus1 modifies U27, U34, and U36 of tRNAIle(UAU), raising the question about how these modifications prevent decay. Our results suggests that Dhp1 targets unspliced pre-tRNAIle(UAU), as a pus1Δ strain in which the only copy of tRNAIle(UAU) has no intron (tI(UAU)-iΔ) is temperature resistant and undergoes no detectable decay, and the corresponding pus1Δ tI(UAU)-WT strain accumulates unspliced pre-tRNAIle(UAU). Moreover, the predicted exon-intron structure of pre-tRNAIle(UAU) differs from the canonical bulge-helix-loop structure compatible with tRNA splicing, and a pus1Δ tI(UAU)i-var strain with intron mutations predicted to improve exon-intron structure is temperature resistant and undergoes little decay. These results suggest that decay of tRNAIle(UAU) by Dhp1 in pus1Δ strains occurs at the level of unspliced pre-tRNAIle(UAU), implying a substantial role for one or more of the Ψ residues in stabilizing the pre-tRNA structure for splicing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
期刊最新文献
A general RNA-templated RNA extension activity of E. coli RNA polymerase. The PAZ domain of Aedes aegypti Dicer 2 is critical for accurate and high-fidelity size determination of virus-derived small interfering RNAs. Retrospective Article: Joseph G. Gall (1928-2024). DIS3L, cytoplasmic exosome catalytic subunit, is essential for development but not cell viability in mice. New reporters for monitoring cellular NMD.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1