Mesenchymal stem cell-mediated adipogenic transformation: a key driver of oral squamous cell carcinoma progression.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Research & Therapy Pub Date : 2025-01-23 DOI:10.1186/s13287-025-04132-9
Yiting Shao, Yu Du, Zheng Chen, Lei Xiang, Shaoqin Tu, Yi Feng, Yuluan Hou, Xiaoxing Kou, Hong Ai
{"title":"Mesenchymal stem cell-mediated adipogenic transformation: a key driver of oral squamous cell carcinoma progression.","authors":"Yiting Shao, Yu Du, Zheng Chen, Lei Xiang, Shaoqin Tu, Yi Feng, Yuluan Hou, Xiaoxing Kou, Hong Ai","doi":"10.1186/s13287-025-04132-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interaction between mesenchymal stem cells (MSCs) and oral squamous cell carcinoma (OSCC) cells plays a major role in OSCC progression. However, little is known about adipogenic differentiation alteration in OSCC-derived MSCs (OSCC-MSCs) and how these alterations affect OSCC growth.</p><p><strong>Methods: </strong>MSCs were successfully isolated and cultured from normal gingival tissue, OSCC peritumoral tissue, and OSCC tissue. This included gingiva-derived MSCs (GMSCs), OSCC adjacent noncancerous tissues-derived MSCs (OSCCN-MSCs), and OSCC-MSCs. The adipogenic and osteogenic differentiation capabilities of these cells were evaluated using Oil Red O and Alizarin Red S staining, respectively. OSCC cells were then co-cultured with either OSCC-MSCs or GMSCs to assess the impact on OSCC cell proliferation and migration. Subcutaneous xenograft experiments were conducted in BALB/c-nu mice to further investigate the effects in vivo. Additionally, immunohistochemical staining was performed on clinical samples to determine the expression levels of fatty acid synthase (FASN) and the proliferation marker Ki67.</p><p><strong>Results: </strong>OSCC-MSCs exhibited enhanced adipogenic differentiation and reduced osteogenic differentiation compared to GMSCs. OSCC-MSCs significantly increased the proliferation and migration of OSCC cells relative to GMSCs and promoted tumor growth in mouse xenografts. Lipid droplet accumulation in the stroma was significantly more pronounced in OSCC + OSCC-MSCs xenografts compared to OSCC + GMSCs xenografts. Free fatty acids (FFAs) levels were elevated in OSCC tissues compared to normal gingival tissues. Moreover, OSCC-MSCs consistently secreted higher levels of FFAs in condition medium than GMSCs. Knockdown of FASN in OSCC-MSCs reduced their adipogenic potential and inhibited their ability to promote OSCC cell proliferation and migration. Clinical sample analysis confirmed higher FASN expression in OSCC stroma, correlating with larger tumor size and increased Ki67 expression in cancer tissues, and was associated with poorer overall survival.</p><p><strong>Conclusions: </strong>OSCC-MSCs promoted OSCC proliferation and migration by upregulating FASN expression and facilitating FFAs secretion. Our results provide new insight into the mechanism of OSCC progression and suggest that the FASN of OSCC-MSCs may be potential targets of OSCC in the future.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"12"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04132-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Interaction between mesenchymal stem cells (MSCs) and oral squamous cell carcinoma (OSCC) cells plays a major role in OSCC progression. However, little is known about adipogenic differentiation alteration in OSCC-derived MSCs (OSCC-MSCs) and how these alterations affect OSCC growth.

Methods: MSCs were successfully isolated and cultured from normal gingival tissue, OSCC peritumoral tissue, and OSCC tissue. This included gingiva-derived MSCs (GMSCs), OSCC adjacent noncancerous tissues-derived MSCs (OSCCN-MSCs), and OSCC-MSCs. The adipogenic and osteogenic differentiation capabilities of these cells were evaluated using Oil Red O and Alizarin Red S staining, respectively. OSCC cells were then co-cultured with either OSCC-MSCs or GMSCs to assess the impact on OSCC cell proliferation and migration. Subcutaneous xenograft experiments were conducted in BALB/c-nu mice to further investigate the effects in vivo. Additionally, immunohistochemical staining was performed on clinical samples to determine the expression levels of fatty acid synthase (FASN) and the proliferation marker Ki67.

Results: OSCC-MSCs exhibited enhanced adipogenic differentiation and reduced osteogenic differentiation compared to GMSCs. OSCC-MSCs significantly increased the proliferation and migration of OSCC cells relative to GMSCs and promoted tumor growth in mouse xenografts. Lipid droplet accumulation in the stroma was significantly more pronounced in OSCC + OSCC-MSCs xenografts compared to OSCC + GMSCs xenografts. Free fatty acids (FFAs) levels were elevated in OSCC tissues compared to normal gingival tissues. Moreover, OSCC-MSCs consistently secreted higher levels of FFAs in condition medium than GMSCs. Knockdown of FASN in OSCC-MSCs reduced their adipogenic potential and inhibited their ability to promote OSCC cell proliferation and migration. Clinical sample analysis confirmed higher FASN expression in OSCC stroma, correlating with larger tumor size and increased Ki67 expression in cancer tissues, and was associated with poorer overall survival.

Conclusions: OSCC-MSCs promoted OSCC proliferation and migration by upregulating FASN expression and facilitating FFAs secretion. Our results provide new insight into the mechanism of OSCC progression and suggest that the FASN of OSCC-MSCs may be potential targets of OSCC in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
期刊最新文献
Mesenchymal stem cell-mediated adipogenic transformation: a key driver of oral squamous cell carcinoma progression. Mesenchymal stem cells derived exosomes: a new era in cardiac regeneration. A novel cryopreservation solution for adipose tissue based on metformin. Antimicrobial activity of adipose-derived mesenchymal stromal cell secretome against methicillin-resistant Staphylococcus aureus. Bone marrow mesenchymal stem cells derived cytokines associated with AKT/IAPs signaling ameliorate Alzheimer's disease development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1