Nora Zakaria , Esther T. Menze , Doaa A. Elsherbiny , Mariane G. Tadros , Mina Y. George
{"title":"Lycopene mitigates paclitaxel-induced cognitive impairment in mice; Insights into Nrf2/HO-1, NF-κB/NLRP3, and GRP-78/ATF-6 axes","authors":"Nora Zakaria , Esther T. Menze , Doaa A. Elsherbiny , Mariane G. Tadros , Mina Y. George","doi":"10.1016/j.pnpbp.2025.111262","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotherapy-induced cognitive impairment, referred to as “chemobrain”, is widely acknowledged as a significant adverse effect of cancer therapy. Paclitaxel, a chemotherapeutic drug, has been reported to cause cognitive impairment clinically and in animal models. However, the precise mechanisms are not fully understood. The current study explored the potential neuroprotective effect of lycopene in paclitaxel-induced cognitive impairment in mice and its potential underlying mechanisms. Mice were randomly allocated into six groups: control, paclitaxel-treated (10 mg/kg), lycopene-treated (5, 10, and 20 mg/kg) + paclitaxel, and lycopene alone-treated (20 mg/kg) groups. The effect of lycopene treatment on behavioral function and histological examination was assessed. Lycopene (20 mg/kg) was selected for additional investigation into the underlying mechanisms. Lycopene treatment counteracted paclitaxel-induced oxidative stress by reducing lipid peroxidation and enhancing catalase levels. Additionally, lycopene-treated mice demonstrated a significant elevation in nuclear factor erythroid 2-related factor 2 with no significant effect on hemeoxygenase-1. Moreover, paclitaxel administration elevated endoplasmic reticulum stress markers; glucose-regulated protein78, activating Transcription Factor 6, C/EBP <em>homologous protein,</em> and apoptosis marker annexin V which were significantly reduced by lycopene treatment. Furthermore, lycopene mitigated paclitaxel-induced neuroinflammation through the reduction of the levels of the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome axis markers; nuclear factor-κB, NLRP3, caspase-1, interleukin-1β, and interleukin-18. Our study findings may provide new evidence that lycopene mitigates paclitaxel-induced cognitive impairment in mice by reversing oxidative stress, endoplasmic reticulum stress, and inflammatory mechanisms.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"137 ","pages":"Article 111262"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584625000168","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemotherapy-induced cognitive impairment, referred to as “chemobrain”, is widely acknowledged as a significant adverse effect of cancer therapy. Paclitaxel, a chemotherapeutic drug, has been reported to cause cognitive impairment clinically and in animal models. However, the precise mechanisms are not fully understood. The current study explored the potential neuroprotective effect of lycopene in paclitaxel-induced cognitive impairment in mice and its potential underlying mechanisms. Mice were randomly allocated into six groups: control, paclitaxel-treated (10 mg/kg), lycopene-treated (5, 10, and 20 mg/kg) + paclitaxel, and lycopene alone-treated (20 mg/kg) groups. The effect of lycopene treatment on behavioral function and histological examination was assessed. Lycopene (20 mg/kg) was selected for additional investigation into the underlying mechanisms. Lycopene treatment counteracted paclitaxel-induced oxidative stress by reducing lipid peroxidation and enhancing catalase levels. Additionally, lycopene-treated mice demonstrated a significant elevation in nuclear factor erythroid 2-related factor 2 with no significant effect on hemeoxygenase-1. Moreover, paclitaxel administration elevated endoplasmic reticulum stress markers; glucose-regulated protein78, activating Transcription Factor 6, C/EBP homologous protein, and apoptosis marker annexin V which were significantly reduced by lycopene treatment. Furthermore, lycopene mitigated paclitaxel-induced neuroinflammation through the reduction of the levels of the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome axis markers; nuclear factor-κB, NLRP3, caspase-1, interleukin-1β, and interleukin-18. Our study findings may provide new evidence that lycopene mitigates paclitaxel-induced cognitive impairment in mice by reversing oxidative stress, endoplasmic reticulum stress, and inflammatory mechanisms.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.