A novel cryopreservation solution for adipose tissue based on metformin.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Research & Therapy Pub Date : 2025-01-23 DOI:10.1186/s13287-025-04142-7
Yaping Deng, Xin Liu, Xichao Jian, Yan Zhang, Yinchi Hou, Suyun Hou, Fang Qi, Shune Xiao, Chengliang Deng
{"title":"A novel cryopreservation solution for adipose tissue based on metformin.","authors":"Yaping Deng, Xin Liu, Xichao Jian, Yan Zhang, Yinchi Hou, Suyun Hou, Fang Qi, Shune Xiao, Chengliang Deng","doi":"10.1186/s13287-025-04142-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autologous fat grafting (AFG) often needs multiple sessions due to low volume retention. Young adipose tissue demonstrates a more pronounced therapeutic effect; thus, the cryopreservation of adipose tissue of young origin is particularly crucial. This study investigated the protective effect of a new cryopreservation solution combining trehalose, glycerol, and metformin on adipose tissue.</p><p><strong>Methods: </strong>This study initially examined the effect of various concentrations of metformin (0, 1, 2, 4, and 8 mM) on oxidative damage in adipose tissue to identify the optimal concentration. Subsequently, 1.5 mL of fresh human adipose tissue was subjected to freezing using trehalose + glycerol (TG group), trehalose + glycerol + metformin (TGM group), and the common cryoprotectant dimethyl sulfoxide (DMSO) + fetal bovine serum (FBS) (DF group). Samples were cryopreserved in liquid nitrogen for 2 weeks. After thawing, 1 mL of adipose tissue from each group was transplanted subcutaneously into the backs of nude mice. The cryoprotective effects on adipose tissue viability were evaluated during transplantation one month after transplantation.</p><p><strong>Results: </strong>The 2 mM concentration of metformin exhibited the lowest reactive oxygen species (ROS) level (29.20 ± 1.73) compared to other concentrations (P < 0.05). Cell proliferation and migration assays also supported the superior performance of the 2 mM concentration. Apoptotic analyses of stromal vascular fraction (SVF) cells showed the lowest levels in the 2 mM group. Compared to other cryopreservation groups, the adipose tissue in the TGM group closely resembled fresh adipose tissue in terms of gross structure and histological characteristics, with the lowest apoptosis rate of SVF cells. In vivo analysis revealed the highest tissue retention rate in the TGM group, with histological examination indicating robust structural integrity.</p><p><strong>Conclusion: </strong>The TGM cryopreservation solution, containing metformin, greatly preserves adipose tissue, reduces apoptosis, and improves tissue retention rates. This solution was non-toxic and safe, making it well-suited for tissue cryopreservation in clinical settings.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"20"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04142-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Autologous fat grafting (AFG) often needs multiple sessions due to low volume retention. Young adipose tissue demonstrates a more pronounced therapeutic effect; thus, the cryopreservation of adipose tissue of young origin is particularly crucial. This study investigated the protective effect of a new cryopreservation solution combining trehalose, glycerol, and metformin on adipose tissue.

Methods: This study initially examined the effect of various concentrations of metformin (0, 1, 2, 4, and 8 mM) on oxidative damage in adipose tissue to identify the optimal concentration. Subsequently, 1.5 mL of fresh human adipose tissue was subjected to freezing using trehalose + glycerol (TG group), trehalose + glycerol + metformin (TGM group), and the common cryoprotectant dimethyl sulfoxide (DMSO) + fetal bovine serum (FBS) (DF group). Samples were cryopreserved in liquid nitrogen for 2 weeks. After thawing, 1 mL of adipose tissue from each group was transplanted subcutaneously into the backs of nude mice. The cryoprotective effects on adipose tissue viability were evaluated during transplantation one month after transplantation.

Results: The 2 mM concentration of metformin exhibited the lowest reactive oxygen species (ROS) level (29.20 ± 1.73) compared to other concentrations (P < 0.05). Cell proliferation and migration assays also supported the superior performance of the 2 mM concentration. Apoptotic analyses of stromal vascular fraction (SVF) cells showed the lowest levels in the 2 mM group. Compared to other cryopreservation groups, the adipose tissue in the TGM group closely resembled fresh adipose tissue in terms of gross structure and histological characteristics, with the lowest apoptosis rate of SVF cells. In vivo analysis revealed the highest tissue retention rate in the TGM group, with histological examination indicating robust structural integrity.

Conclusion: The TGM cryopreservation solution, containing metformin, greatly preserves adipose tissue, reduces apoptosis, and improves tissue retention rates. This solution was non-toxic and safe, making it well-suited for tissue cryopreservation in clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
期刊最新文献
Mesenchymal stem cell-mediated adipogenic transformation: a key driver of oral squamous cell carcinoma progression. Mesenchymal stem cells derived exosomes: a new era in cardiac regeneration. A novel cryopreservation solution for adipose tissue based on metformin. Antimicrobial activity of adipose-derived mesenchymal stromal cell secretome against methicillin-resistant Staphylococcus aureus. Bone marrow mesenchymal stem cells derived cytokines associated with AKT/IAPs signaling ameliorate Alzheimer's disease development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1