True cancer stem cells exhibit relative degrees of dormancy and genomic stability

IF 4.8 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Neoplasia Pub Date : 2025-02-01 DOI:10.1016/j.neo.2025.101127
Sanford H. Barsky , Krista Mcphail , Justin Wang , Jordan Dillard , Crystal J. Beard , Yin Ye
{"title":"True cancer stem cells exhibit relative degrees of dormancy and genomic stability","authors":"Sanford H. Barsky ,&nbsp;Krista Mcphail ,&nbsp;Justin Wang ,&nbsp;Jordan Dillard ,&nbsp;Crystal J. Beard ,&nbsp;Yin Ye","doi":"10.1016/j.neo.2025.101127","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.</div></div><div><h3>Methods</h3><div>Using a human PDX, Mary-X, that overall expressed a strong cancer stem cell phenotype, the study conducted both GPP-labelled retroviral transfection and fluorescent microsphere uptake studies to distinguish proliferating from dormant cells and array CGH to identify regions of amplifications (gains) and deletions (losses) on the overall Mary-X population and then applied derived probes by FISH on individual cells to identify a genomically stable subpopulation.</div></div><div><h3>Results</h3><div>Whereas 97-99 % of the cells expressed retroviral GFP and not fluorescent particles and showed numerous gene amplifications and deletions, approximately 1-3 % of the cells showed the opposite. The subpopulation with the retained fluorescent microspheres and exhibiting genomic stability was significantly smaller in size than their GFP-expressing and genomically unstable counterparts. Sorting Mary-X spheroids on the basis of either CD133 or ALDH positivity further enriched for this subpopulation.</div></div><div><h3>Conclusions</h3><div>These studies indicate that a truly biological cancer stem cell subpopulation exists that exhibits both dormancy and genomic stability. This subpopulation could not have been derived from the proliferating and resulting genomically unstable population and therefore represents a truly hierarchical stem cell subpopulation capable of only unidirectional differentiation.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"60 ","pages":"Article 101127"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000065","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.

Methods

Using a human PDX, Mary-X, that overall expressed a strong cancer stem cell phenotype, the study conducted both GPP-labelled retroviral transfection and fluorescent microsphere uptake studies to distinguish proliferating from dormant cells and array CGH to identify regions of amplifications (gains) and deletions (losses) on the overall Mary-X population and then applied derived probes by FISH on individual cells to identify a genomically stable subpopulation.

Results

Whereas 97-99 % of the cells expressed retroviral GFP and not fluorescent particles and showed numerous gene amplifications and deletions, approximately 1-3 % of the cells showed the opposite. The subpopulation with the retained fluorescent microspheres and exhibiting genomic stability was significantly smaller in size than their GFP-expressing and genomically unstable counterparts. Sorting Mary-X spheroids on the basis of either CD133 or ALDH positivity further enriched for this subpopulation.

Conclusions

These studies indicate that a truly biological cancer stem cell subpopulation exists that exhibits both dormancy and genomic stability. This subpopulation could not have been derived from the proliferating and resulting genomically unstable population and therefore represents a truly hierarchical stem cell subpopulation capable of only unidirectional differentiation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neoplasia
Neoplasia 医学-肿瘤学
CiteScore
9.20
自引率
2.10%
发文量
82
审稿时长
26 days
期刊介绍: Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.
期刊最新文献
Targeting BARD1 suppresses a Myc-dependent transcriptional program and tumor growth in pancreatic ductal adenocarcinoma Granulocyte-macrophage colony-stimulating factor for newly diagnosed glioblastoma LSD1+8a is an RNA biomarker of neuroendocrine prostate cancer Targeting PAR1 activation in JAK2V617F-driven philadelphia-negative myeloproliferative neoplasms: Unraveling its role in thrombosis and disease progression O-GlcNAc-modified HOXA9 suppresses ferroptosis via promoting UBR5-mediated SIRT6 degradation in nasopharyngeal carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1