{"title":"Cost-benefit tradeoff mediates the transition from rule-based to memory-based processing during practice.","authors":"Guochun Yang, Jiefeng Jiang","doi":"10.1371/journal.pbio.3002987","DOIUrl":null,"url":null,"abstract":"<p><p>Practice not only improves task performance but also changes task execution from rule- to memory-based processing by incorporating experiences from practice. However, how and when this change occurs is unclear. We test the hypothesis that strategy transitions in task learning can result from decision-making guided by cost-benefit analysis. Participants learn 2 task sequences and are then queried about the task type at a cued sequence and position. Behavioral improvement with practice can be accounted for by a computational model implementing cost-benefit analysis and the model-predicted strategy transition points align with the observed behavioral slowing. Model comparisons using behavioral data show that strategy transitions are better explained by a cost-benefit analysis across alternative strategies rather than solely on memory strength. Model-guided fMRI findings suggest that the brain encodes a decision variable reflecting the cost-benefit analysis and that different strategy representations are double-dissociated. Further analyses reveal that strategy transitions are associated with activation patterns in the dorsolateral prefrontal cortex and increased pattern separation in the ventromedial prefrontal cortex. Together, these findings support cost-benefit analysis as a mechanism of practice-induced strategy shift.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002987"},"PeriodicalIF":9.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002987","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Practice not only improves task performance but also changes task execution from rule- to memory-based processing by incorporating experiences from practice. However, how and when this change occurs is unclear. We test the hypothesis that strategy transitions in task learning can result from decision-making guided by cost-benefit analysis. Participants learn 2 task sequences and are then queried about the task type at a cued sequence and position. Behavioral improvement with practice can be accounted for by a computational model implementing cost-benefit analysis and the model-predicted strategy transition points align with the observed behavioral slowing. Model comparisons using behavioral data show that strategy transitions are better explained by a cost-benefit analysis across alternative strategies rather than solely on memory strength. Model-guided fMRI findings suggest that the brain encodes a decision variable reflecting the cost-benefit analysis and that different strategy representations are double-dissociated. Further analyses reveal that strategy transitions are associated with activation patterns in the dorsolateral prefrontal cortex and increased pattern separation in the ventromedial prefrontal cortex. Together, these findings support cost-benefit analysis as a mechanism of practice-induced strategy shift.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.