Vanessa D Hohn, Laura Tiemann, Felix S Bott, Elisabeth S May, Clara Fritzen, Moritz M Nickel, Cristina Gil Ávila, Markus Ploner
{"title":"Neurofeedback and attention modulate somatosensory alpha oscillations but not pain perception.","authors":"Vanessa D Hohn, Laura Tiemann, Felix S Bott, Elisabeth S May, Clara Fritzen, Moritz M Nickel, Cristina Gil Ávila, Markus Ploner","doi":"10.1371/journal.pbio.3002972","DOIUrl":null,"url":null,"abstract":"<p><p>Pain is closely linked to alpha oscillations (8 < 13 Hz) which are thought to represent a supra-modal, top-down mediated gating mechanism that shapes sensory processing. Consequently, alpha oscillations might also shape the cerebral processing of nociceptive input and eventually the perception of pain. To test this mechanistic hypothesis, we designed a sham-controlled and double-blind electroencephalography (EEG)-based neurofeedback study. In a short-term neurofeedback training protocol, healthy participants learned to up- and down-regulate somatosensory alpha oscillations using attention. Subsequently, we investigated how this manipulation impacts experimental pain applied during neurofeedback. Using Bayesian statistics and mediation analysis, we aimed to test whether alpha oscillations mediate attention effects on pain perception. The results showed that attention and neurofeedback successfully up- and down-regulated the asymmetry of somatosensory alpha oscillations. However, attention and neurofeedback did not modulate pain ratings or related brain responses. Accordingly, somatosensory alpha oscillations did not mediate attention effects on pain perception. Thus, our results challenge the hypothesis that somatosensory alpha oscillations shape pain perception. A causal relationship between alpha oscillations and pain perception might not exist or be more complex than hypothesized. Trial registration: Following Stage 1 acceptance, the study was registered at ClinicalTrials.gov NCT05570695.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002972"},"PeriodicalIF":9.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002972","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Pain is closely linked to alpha oscillations (8 < 13 Hz) which are thought to represent a supra-modal, top-down mediated gating mechanism that shapes sensory processing. Consequently, alpha oscillations might also shape the cerebral processing of nociceptive input and eventually the perception of pain. To test this mechanistic hypothesis, we designed a sham-controlled and double-blind electroencephalography (EEG)-based neurofeedback study. In a short-term neurofeedback training protocol, healthy participants learned to up- and down-regulate somatosensory alpha oscillations using attention. Subsequently, we investigated how this manipulation impacts experimental pain applied during neurofeedback. Using Bayesian statistics and mediation analysis, we aimed to test whether alpha oscillations mediate attention effects on pain perception. The results showed that attention and neurofeedback successfully up- and down-regulated the asymmetry of somatosensory alpha oscillations. However, attention and neurofeedback did not modulate pain ratings or related brain responses. Accordingly, somatosensory alpha oscillations did not mediate attention effects on pain perception. Thus, our results challenge the hypothesis that somatosensory alpha oscillations shape pain perception. A causal relationship between alpha oscillations and pain perception might not exist or be more complex than hypothesized. Trial registration: Following Stage 1 acceptance, the study was registered at ClinicalTrials.gov NCT05570695.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.