Global microbial community biodiversity increases with antimicrobial toxin abundance of rare taxa.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY ISME Journal Pub Date : 2025-01-24 DOI:10.1093/ismejo/wraf012
Ya Liu, Yu Geng, Yiru Jiang, Peng Li, Yue-Zhong Li, Zheng Zhang
{"title":"Global microbial community biodiversity increases with antimicrobial toxin abundance of rare taxa.","authors":"Ya Liu, Yu Geng, Yiru Jiang, Peng Li, Yue-Zhong Li, Zheng Zhang","doi":"10.1093/ismejo/wraf012","DOIUrl":null,"url":null,"abstract":"<p><p>One of the central questions in microbial ecology is how to explain the high biodiversity of communities. A large number of rare taxa in the community have not been excluded by abundant taxa with competitive advantages, a contradiction known as the biodiversity paradox. Recently, increasing evidence has revealed the central importance of antimicrobial toxins as crucial weapons of antagonism in microbial survival. The powerful effects of antimicrobial toxins result in simple combinations of microorganisms failing to coexist under laboratory conditions, but it is unclear whether they also have a negative impact on the biodiversity of natural communities. Here, we revealed that microbial communities worldwide universally possess functional potential for antimicrobial toxin production. Counterintuitively, the biodiversity of global microbial communities increases, rather than decreases, as the abundance of antimicrobial toxins in rare taxa rises. Rare taxa may encode more antimicrobial toxins than abundant taxa, which is associated with the maintenance of the high biodiversity of microbial communities amid complex interactions. Our findings suggest that the antagonistic interaction caused by antimicrobial toxins may play a positive role in microbial community biodiversity at the global scale.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf012","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the central questions in microbial ecology is how to explain the high biodiversity of communities. A large number of rare taxa in the community have not been excluded by abundant taxa with competitive advantages, a contradiction known as the biodiversity paradox. Recently, increasing evidence has revealed the central importance of antimicrobial toxins as crucial weapons of antagonism in microbial survival. The powerful effects of antimicrobial toxins result in simple combinations of microorganisms failing to coexist under laboratory conditions, but it is unclear whether they also have a negative impact on the biodiversity of natural communities. Here, we revealed that microbial communities worldwide universally possess functional potential for antimicrobial toxin production. Counterintuitively, the biodiversity of global microbial communities increases, rather than decreases, as the abundance of antimicrobial toxins in rare taxa rises. Rare taxa may encode more antimicrobial toxins than abundant taxa, which is associated with the maintenance of the high biodiversity of microbial communities amid complex interactions. Our findings suggest that the antagonistic interaction caused by antimicrobial toxins may play a positive role in microbial community biodiversity at the global scale.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
期刊最新文献
Life history strategies complement niche partitioning to support the coexistence of closely related Gilliamella species in the bee gut. Plasmids encode and can mobilize onion pathogenicity in Pantoea agglomerans. Global microbial community biodiversity increases with antimicrobial toxin abundance of rare taxa. Surfactin facilitates establishment of Bacillus subtilis in synthetic communities. Long-term climate establishes functional legacies by altering microbial traits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1