Identification of Bacterial Lipopolysaccharide-Associated Genes and Molecular Subtypes in Autism Spectrum Disorder.

IF 1.8 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pharmacogenomics & Personalized Medicine Pub Date : 2025-01-17 eCollection Date: 2025-01-01 DOI:10.2147/PGPM.S494126
Yuanxia He, Yun He, Boli Cheng
{"title":"Identification of Bacterial Lipopolysaccharide-Associated Genes and Molecular Subtypes in Autism Spectrum Disorder.","authors":"Yuanxia He, Yun He, Boli Cheng","doi":"10.2147/PGPM.S494126","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autism spectrum disorder (ASD) is a complex neurodevelopmental condition marked by diverse symptoms affecting social interaction, communication, and behavior. This research aims to explore bacterial lipopolysaccharide (LPS)- and immune-related (BLI) molecular subgroups in ASD to enhance understanding of the disorder.</p><p><strong>Methods: </strong>We analyzed 89 control samples and 157 ASD samples from the GEO database, identifying BLI signatures using least absolute shrinkage and selection operator regression (LASSO) and logistic regression machine learning algorithms. A nomogram prediction model was developed based on these signatures, and we performed Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and immune cell infiltration analysis to assess the impact of BLI subtypes and their underlying mechanisms.</p><p><strong>Results: </strong>Our findings revealed 17 differentially expressed BLI genes in children with ASD, with BLNK, MAPK8, PRKCQ, and TNFSF12 identified as potential biomarkers. The nomogram demonstrated high diagnostic accuracy for ASD. We delineated two distinct molecular subtypes (Cluster 1 and Cluster 2), with GSVA indicating that Cluster 2 showed upregulation of immune- and inflammation-related pathways. This cluster exhibited increased levels of antimicrobial agents, chemokines, cytokines, and TNF family cytokines, alongside activation of bacterial lipoprotein-related pathways. A significant correlation was found between these pathways and distinct immune cell subtypes, suggesting a potential mechanism for neuroinflammation and immune cell infiltration in ASD.</p><p><strong>Conclusion: </strong>Our research highlights the role of BLI-associated genes in the immune responses of individuals with ASD, indicating their contribution to the disorder's typification. The interplay between bacterial components, genetic predisposition, and immune dysregulation offers new insights for understanding ASD and developing personalized interventions.</p>","PeriodicalId":56015,"journal":{"name":"Pharmacogenomics & Personalized Medicine","volume":"18 ","pages":"1-18"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics & Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/PGPM.S494126","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition marked by diverse symptoms affecting social interaction, communication, and behavior. This research aims to explore bacterial lipopolysaccharide (LPS)- and immune-related (BLI) molecular subgroups in ASD to enhance understanding of the disorder.

Methods: We analyzed 89 control samples and 157 ASD samples from the GEO database, identifying BLI signatures using least absolute shrinkage and selection operator regression (LASSO) and logistic regression machine learning algorithms. A nomogram prediction model was developed based on these signatures, and we performed Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and immune cell infiltration analysis to assess the impact of BLI subtypes and their underlying mechanisms.

Results: Our findings revealed 17 differentially expressed BLI genes in children with ASD, with BLNK, MAPK8, PRKCQ, and TNFSF12 identified as potential biomarkers. The nomogram demonstrated high diagnostic accuracy for ASD. We delineated two distinct molecular subtypes (Cluster 1 and Cluster 2), with GSVA indicating that Cluster 2 showed upregulation of immune- and inflammation-related pathways. This cluster exhibited increased levels of antimicrobial agents, chemokines, cytokines, and TNF family cytokines, alongside activation of bacterial lipoprotein-related pathways. A significant correlation was found between these pathways and distinct immune cell subtypes, suggesting a potential mechanism for neuroinflammation and immune cell infiltration in ASD.

Conclusion: Our research highlights the role of BLI-associated genes in the immune responses of individuals with ASD, indicating their contribution to the disorder's typification. The interplay between bacterial components, genetic predisposition, and immune dysregulation offers new insights for understanding ASD and developing personalized interventions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmacogenomics & Personalized Medicine
Pharmacogenomics & Personalized Medicine Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
3.30
自引率
5.30%
发文量
110
审稿时长
16 weeks
期刊介绍: Pharmacogenomics and Personalized Medicine is an international, peer-reviewed, open-access journal characterizing the influence of genotype on pharmacology leading to the development of personalized treatment programs and individualized drug selection for improved safety, efficacy and sustainability. In particular, emphasis will be given to: Genomic and proteomic profiling Genetics and drug metabolism Targeted drug identification and discovery Optimizing drug selection & dosage based on patient''s genetic profile Drug related morbidity & mortality intervention Advanced disease screening and targeted therapeutic intervention Genetic based vaccine development Patient satisfaction and preference Health economic evaluations Practical and organizational issues in the development and implementation of personalized medicine programs.
期刊最新文献
Identification of Bacterial Lipopolysaccharide-Associated Genes and Molecular Subtypes in Autism Spectrum Disorder. PEAR1, PON1, CYP2C19, CYP1A2 and F2R Polymorphisms are Associated with MACE in Clopidogrel-Treated Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. The Association of PLA2G7 Gene Polymorphisms with Serum Lp-PLA2 Activity and Lipid Profile in Han Chinese Patients with Coronary Heart Disease. The Genetic and Molecular Drivers of Multiple Myeloma: Current Insights, Clinical Implications, and the Path Forward. Associations Between the Polymorphisms in the Coding Sequence of SLCO1B1 and Blood Lipid Levels Before and After Treatment by Atorvastatin in the Chinese Han Adults with Dyslipidemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1