{"title":"Acute arsenic exposure induces cyto-genotoxicity and histological alterations in Labeo rohita","authors":"Fakhira Khalid, Hamda Azmat","doi":"10.1016/j.jtemb.2025.127600","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Arsenic emerges as most potent hazardous element ranked as number one in ATSDR (Agency for Toxic Substances and Disease Registry) list, can easily accumulate in fish, transported to humans via consumption and affect humans and aquatic organisms. Considering above, current experiment designed to evaluate cyto-genotoxicity and histological alterations induced by arsenic in <em>Labeo rohita</em> used as an animal model<em>.</em></div></div><div><h3>Methods</h3><div>By applying complete randomized design sampling acclimatized individuals of <em>Labeo rohita</em> (10 batches of 10 each with triplicates) were exposed to nine definitive doses (12, 14, 16, 18, 20, 22, 24, 26 and 28 mgL<sup>−1</sup>) of arsenic in glass aquaria to determine 96-h lethal concentration (LC<sub>50</sub>) of arsenic. Control group without arsenic was also run simultaneously. After 96-h exposure various histo-biochemical parameters were evaluated in all experimental groups.</div></div><div><h3>Results</h3><div>The 96-h lethal concentration of arsenic was found to be 20.2 mgL<sup>−1</sup>. Upon arsenic exposure, oxidative stress biomakers: catalase (CAT), superoxide dismutase (SOD) and lipid per oxidation (LPO) and accumulation of arsenic in all targeted organs were considerably (p ≤ 0.05) increased in dose dependent manner and in comparison, to unexposed (control) group. Serum liver function enzymes, immunological status (albumin, globulin and total protein), cortisol level and cytochrome P450 gene expression remarkably (p ≤ 0.05) altered on arsenic exposure. The histological analysis also showed destructive alterations on exposure to arsenic in gill and liver tissues.</div></div><div><h3>Conclusion</h3><div>These results confirmed that exposure of arsenic led to pronounced deleterious alterations in <em>Labeo rohita</em> and evidencing the need for monitoring alarmingly increasing concentration of arsenic.</div></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"88 ","pages":"Article 127600"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trace Elements in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0946672X25000136","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Arsenic emerges as most potent hazardous element ranked as number one in ATSDR (Agency for Toxic Substances and Disease Registry) list, can easily accumulate in fish, transported to humans via consumption and affect humans and aquatic organisms. Considering above, current experiment designed to evaluate cyto-genotoxicity and histological alterations induced by arsenic in Labeo rohita used as an animal model.
Methods
By applying complete randomized design sampling acclimatized individuals of Labeo rohita (10 batches of 10 each with triplicates) were exposed to nine definitive doses (12, 14, 16, 18, 20, 22, 24, 26 and 28 mgL−1) of arsenic in glass aquaria to determine 96-h lethal concentration (LC50) of arsenic. Control group without arsenic was also run simultaneously. After 96-h exposure various histo-biochemical parameters were evaluated in all experimental groups.
Results
The 96-h lethal concentration of arsenic was found to be 20.2 mgL−1. Upon arsenic exposure, oxidative stress biomakers: catalase (CAT), superoxide dismutase (SOD) and lipid per oxidation (LPO) and accumulation of arsenic in all targeted organs were considerably (p ≤ 0.05) increased in dose dependent manner and in comparison, to unexposed (control) group. Serum liver function enzymes, immunological status (albumin, globulin and total protein), cortisol level and cytochrome P450 gene expression remarkably (p ≤ 0.05) altered on arsenic exposure. The histological analysis also showed destructive alterations on exposure to arsenic in gill and liver tissues.
Conclusion
These results confirmed that exposure of arsenic led to pronounced deleterious alterations in Labeo rohita and evidencing the need for monitoring alarmingly increasing concentration of arsenic.
期刊介绍:
The journal provides the reader with a thorough description of theoretical and applied aspects of trace elements in medicine and biology and is devoted to the advancement of scientific knowledge about trace elements and trace element species. Trace elements play essential roles in the maintenance of physiological processes. During the last decades there has been a great deal of scientific investigation about the function and binding of trace elements. The Journal of Trace Elements in Medicine and Biology focuses on the description and dissemination of scientific results concerning the role of trace elements with respect to their mode of action in health and disease and nutritional importance. Progress in the knowledge of the biological role of trace elements depends, however, on advances in trace elements chemistry. Thus the Journal of Trace Elements in Medicine and Biology will include only those papers that base their results on proven analytical methods.
Also, we only publish those articles in which the quality assurance regarding the execution of experiments and achievement of results is guaranteed.